

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 35

Chapter 2: Technology Frameworks for Information Sharing

Information-rich analysis efforts are characterized by their struggles with data

preparation. This process can take months or years to complete (Waddell 2004), creating

a situation where the “dirty little secret” of information analysis is that the majority of

the time and effort is spent in data acquisition and formatting. The planning profession

has generally ignored this problem, considering it a software issue which will improve

with time and progress in the general field of information systems. This point of view

seems reasonable, but much evidence suggests otherwise. If that is the case, it would

seem that we would have observed significant improvements over the last few decades,

but the results are mixed. We are digitizing less data, and using more data in our analyses,

yet we continue to duplicate data development efforts, and we rarely implement systems

whose data stays relevant from year to year. The problem is exacerbated by the fact that

the organizations information moves between have different professional cultures, goals,

and skills. Administrative divisions like property assessing have little in common

culturally with the planning department, or a zoning board, or a local watershed

protection group. These communities require their own methodologies for information

processing, visualization and dissemination, and any proposal for improving information

integration must not put restrictions on any organization’s natural operational processes.

A well-known concept in decision support is the idea that our systems should help

people engage in the transformation of data into information into knowledge. Our

current technologies have been good at providing decision support to individuals or

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 36

small groups using self-contained systems, but when the system is like most planning

analyses, having multiple, heterogeneous participants in every area—from the creation of

data, to the modeling, to the presentation of results—they break down under the

operational costs of the information transactions.

This situation suggests that the root causes of our data dilemma are not in what

information systems or data converters we happen to use, but in defining an overall

framework for processing information. A framework is an extensible structure for

describing a set of concepts, methods, technologies, and cultural changes necessary for a

complete product design and manufacturing process (CERN 2004). It is more than a set

of software recommendations, or even a new technology proposal, but all those things in

conjunction with the cultural and institutional changes necessary to effect real progress.

This chapter presents a technology framework in which we can reduce costs, while

developing urban information systems that hold up to increasing demands from

participants in data input (data), information development (modeling), and knowledge

creation (visualization and public participation). First, the concept of a planning support

system is positioned generically as a distributed computing environment. This allows

planners to leverage the systems that computer scientists have created for distributed

information processing instead of inventing our own technology baseline. While there

are a few alternative technologies for doing distributed computing, a Web Services

framework is chosen. This decision helps solve the next issue, which is to develop

planning-specific decision support systems within the distributed computing

environment. In a Web Services framework, domain-specific information models are

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 37

developed in a semantic meta-language like RDF or XML. While these tools have

various pros and cons, Web Services software available today is designed to use XML,

and the practicality of using RDF has yet to be shown. In the following chapters, we

adopt the Web services framework, and use it to prototype a new urban information

system based on data and analysis services. This is presented through a series of use

cases relating to data publishing, urban modeling, and participatory GIS where case-

specific solutions are developed. Finally, a full system is presented in Chapter 7, and the

MassGIS buildout analysis is presented in this new framework. The XML vocabulary is

called Planning Analysis and Modeling Markup Language, or PAMML, and the Web Services

built on it are referred to as PAMML services.

An introduction to distributed computing

A distributed computing environment is one in which information and the

applications that make use of it are physically located on different computers. In order

for these computers to know that others of their kind exist, and how to talk to them,

computers need a whole host of hardware and software. For the purposes of this work,

we will assume that communication occurs via what is commonly called the Internet,

which includes Ethernet and TCP/IP.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 38

In this environment, an information warehouse is called a

resource, and the system that provides information is generally

called a service. So in this parlance, information, or data, is

retrieved from a resource through interaction with a service. The

agent that requests information—for example a person, a

computer or a computer program—is called a client. What has

just been described is usually called a “three-tier architecture” in

computing. This architecture underlies most of the important

systems in use today, including e-mail, instant messaging, and the

World Wide Web.

In this architecture, any information store, such as a parcel

database or an address book, becomes an abstract concept. The

actual data can only be accessed by making a request to a service, which serves as the

gatekeeper to the data. PAMML is a language that describes how to build services, so

that different services can be expected to reliably interact with one another.

This architecture is quite complex and difficult to implement in practice, so why

bother? The best answer is that distributed computing is flexible enough to mirror the

organizational situations we encounter in the real world. For example, if everyone was

required to have an email server on his or her computer and they could only read their

email on that computer, it is doubtful that email would be in widespread use today. In

government, our interest centers on the distributed nature of information and domain

knowledge. For example, the assessing department uses parcel data more than any other

Figure 2-2:
Abstract 3-Tier Architecture

Figure 2-2:
Web 3-Tier Architecture

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 39

agency. Therefore, they are best able to make sure that parcel information is up to date

and captures the knowledge about parcels required for municipal administration. The

same applies to other domain experts, such as traffic engineers, natural resource

managers, and infrastructure providers. Unlike most of these other organizations,

planning practice is defined by the ability to integrate and analyze information from

other domains. If successful planning outcomes were not so dependent upon having

access to the right information, such close attention would not have to be paid to the

information infrastructure of all the professions involved in collection information about

places.

The IT world offers various solutions for implementing distributed computing

applications. EDI, or electronic data interchange, is decades old and has been favored by

organizations with high security and reliability needs like banks and airlines. While the

technology is proven, participation in an EDI system requires a great deal of

programming and system administration skills, which would eliminate the potential

participation of most local governments and non-profits.

In the early 1990s a system called CORBA became popular. Using the standard

protocol IIOP, a CORBA-based program from any vendor, on almost any computer,

operating system, programming language, and network, can interoperate with a CORBA-

based program from the same or another vendor, on almost any other computer,

operating system, programming language, and network. CORBA has been widely used to

connect corporate information systems, and is getting some attention in the GIS field

(Preston, Clayton and Wells 2003). A full analysis of this is beyond the scope of this

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 40

paper, but in general, CORBA seems to be too “tightly coupled”, requiring too high a

level of coordination and cooperation between agencies, despite its language and

operating system independence (Gottschalk 2000).

Web Services

As personal computing and the World Wide Web gained popularity in the 1990s, the

IT landscape changed. Information sharing and processing was no longer the sole

purview of big corporations. There was suddenly a vision of all organizations and

individuals participating in a global information community. The old systems were not

offering answers to these new challenges, so computer scientists looked at the Web and

tried to understand why it had been so successful. It was found that the Web architecture

requires only a minimal set of standards—HTTP as the basic application level protocol,

and HTML for formatting information—but it delivers the ability to communicate

without centralized planning or control, and to integrate a heterogeneous mix of

platforms and programming models (Curbera 2001). The result is a very shallow

interaction model between a very heterogeneous set of clients and servers that allows

simple things, like sending a text file to someone’s computer, to be easy; and complicated

things, like buying a book with a credit card, to be possible.

The Web still has many limitations. HTML was designed as a way to mark up text

for display, and HTTP is best at handling communications between only two computers

at a time. In order to improve upon the quality of information available on the Web, and

the systems that enable multi-computer, multi-organization transactions, something

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 41

more was needed. XML, the successor to HTML, and Web Services, a descendant of

EDI and CORBA built on Web standards, address these needs.

XML and XML Schema de f ined

XML stands for eXtensible Markup Language. It is a meta-language—a language

designed for developing other languages. XML was developed as a way to tag

information with metadata and enforce structural rules without requiring that the

information be stored in or adhere to the strict rules of a database. It has proved to be a

highly successful strategy, as the language is barely five years old and is already

extensively used to formally describing information that does not fit nicely into the

relational database paradigm. What XML provides is a consistent structure and a way of

formally describing a language’s vocabulary. The World Wide Web Consortium defines

XML’s design goals as follows (World Wide Web Consortium 2004):

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum,

ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 42

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

The benefit to writing a language in XML is that you can take advantage of a vast

collection of software already developed to process XML, and only write the software

that deals with the specifics of your particular language. Furthermore, one XML language

can use others to describe generic entities. For example, XML language developers do

not have to describe how a person’s address should be written. They can simply use an

XML address language developed by another information community (such as software

companies that develop address book software). More importantly, a great deal of

infrastructure needed to make an application work is common to all applications, such as

security, authentication, field validation, etc. Using XML makes it possible for a language

writer to be confident that their language can take advantage of advances in these areas

without requiring major changes to their own work.

The way one develops an XML-based language is to write a rulebook. This is done in

an XML language called XML Schema. This document functions as a dictionary—

defining the set of terms that can be used—and also as a grammatical reference—

enforcing rules about how words are put together to make sense. Additionally, XML

Schema has the ability to reference other XML Schemas. This makes it possible to

leverage existing work in related areas. PAMML can use this mechanism to avoid re-

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 43

inventing the wheel in the areas of networking, identity management, databases, and

GIS. For example, whenever a PAMML document needs to reference to a resource

located somewhere on the Internet, the World Wide Web Consortium’s (W3C) XLink

vocabulary can be used to identify the resource. Database access may take advantage of

W3C’s evolving XQuery vocabulary. In the geographic information systems field, a

number of OpenGIS Consortium (OGC) specifications will be used. GML (Geography

Markup Language) will be a supported data set format, and GML will also be used as the

“native” geographic object language. WFS (Web Feature Service) will be a supported

data format, in concert with the Filter encoding specification, which defines queries on

geographic data.

Web servi c e s de f ined

“Web services” is an umbrella term used to describe systems that allow computer

software to communicate using XML as a messaging language. The different

communication implementation strategies go by many names (the most well known

being SOAP, or Simple Object Access Protocol). However, the implementation

strategies are not important in this context. What is most important is that all Web

services strategies use the well-known and widely implemented Internet protocol for

communication—HTTP—the foundation upon which all Web sites operate. While

HTTP’s simplicity has many drawbacks, the advantages are numerous. The most

obvious is that most organizations already have a Web infrastructure in place, so the

most basic Web Services implementations can be handled in a familiar way, and the

extensive range of Web software can be used to develop and run new Web Service-based

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 44

applications. The other important aspect of Web services is that they use XML for

passing messages between computers, preserving the transparency that has made XML

so popular and useful.

The description of a Web service can be modeled in two parts. In the abstract part,

WSDL describes a Web service in terms of messages it sends and receives through a type

system, typically W3C XML Schema. Message exchange patterns define the sequence

and cardinality of messages. An operation associates message exchange patterns with one

or more messages. An interface groups these operations in a transport and wire

independent manner. In the concrete part of the description, bindings specify the

transport and wire format for interfaces. A service endpoint associates network address

with a binding. Finally, a service groups the endpoints that implement a common

interface. Figure 2-3 shows the conceptual WSDL component model.

Figure 2-3: WSDL conceptual model

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 45

Some alternative frameworks

As mentioned earlier, precursors to Web services were EDI and CORBA. Also in

this group are other frameworks having their roots in computer programming languages,

like RMI (remote method invocation) and DCOM (distributed component object

model), and programming languages in general. The problem with these systems is that

they are too “tightly coupled,” meaning that the two organizations wanting to exchange

information with each other need to know a great deal about the other’s systems and use

similar technologies to build the communication software. When one organization

changes their database or a piece of code, it is likely that the other organization will have

to do the same. This type of system will only work out if there are a limited number of

groups involved and they have a strong motivation to collaborate.

Systems that seek to integrate organizations on a larger scale need “loosely coupled”

frameworks. In a loosely coupled system, most aspects of an organization’s information

system are hidden, or abstracted, from the world. There is no need for particulars such

as operating system, database software, and even the information model, to be shared

with others. Organizations exchange information via computer-to-computer messages,

which are understood by all the partners in the exchange. The earlier description of

XML and Web services obviously fits this description, but two other frameworks seek to

do similar things, UML and the Semantic Web.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 46

UML

“The Unified Modeling Language (UML) is a graphical language for visualizing,

specifying, constructing, and documenting the artifacts of a software-intensive system.

The UML offers a standard way to write a system’s blueprints, including conceptual

things such as business processes and system functions as well as concrete things such

as programming language statements, database schemas, and reusable software

components” (Object Management Group 2003, page xxv). This notion of a standard

way to write a system’s blueprints makes UML a candidate for developing a generic

planning information system, because this helps to fulfill the requirements of a loosely

coupled system. Its strengths are that its primary output is a visual diagram; it can be

used to describe a system in a very loose, unspecific manner; but can also be highly

specific if necessary, retaining the features of a formal method. As stated by Muller, “A

method defines a reproducible path for obtaining reliable results. All knowledge-based

activities use methods that vary in sophistication and formality. Cooks talk about

recipes…architects use blueprints, and musicians follow rules of composition. Similarly,

a software development method describes how to model and build software systems

(Muller 2000).” The UML method represents the software industry’s consensus on how

to graphically describe a software system.

The UML’s strengths are also its weaknesses. While a graphic notation is great for

humans, it is not computer readable. Also, generalized UML models are too loose. It is

difficult to ensure that different applications can interpret the model in the same way and

therefore interoperate. Software engineers use the UML to explain high-level ideas about

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 47

system design, not to directly specify system execution. There have been efforts to

overcome these limitations by specifying an XML vocabulary for UML diagrams, and

develop standards for highly specific models, but these efforts quickly begin to look like

Web services, and will probably end up as such.

Web Ontology Language

The Web Ontology Language (OWL) is a relatively new initiative from the World

Wide Web Consortium. It represents a major step in the maturation process of efforts to

define formal semantics about Internet-accessible information content. These efforts

began with a DARPA-funded effort called DAMML+OIL and more recently has moved

forward under the Resource Description Framework (RDF) specification

(http://www.w3.org/TR/rdf-primer/). OWL and RDF are part of a broad effort geared

towards improving the description of information on the Web, called the Semantic Web.

The World Wide Web Consortium (W3C) defines the Semantic Web as, “the

representation of data on the World Wide Web…It is based on the Resource

Description Framework (RDF), which integrates a variety of applications using XML for

syntax and URIs for naming” (http://www.w3.org/2001/sw/). Here is the W3C’s

definition of OWL:

“OWL can be used to explicitly represent the meaning of terms in vocabularies and

the relationships between those terms. This representation of terms and their

interrelationships is called an ontology. OWL has more facilities for expressing meaning

and semantics than XML, RDF, and RDF-S, and thus OWL goes beyond these

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 48

languages in its ability to represent machine interpretable content on the Web. OWL is a

revision of the DAML+OIL web ontology language incorporating lessons learned from

the design and application of DAML+OIL (http://www.w3.org/TR/owl-features/).”

OWL and RDF have many similarities to XML Schema. In fact, they both use XML

Schema as their recommended expression language. The major difference between XML

Schema and the semantic languages seems to be in the amount of flexibility allowed in

defining relationships. XML Schema is limited in its ability to say that one thing is like

another without defining them as being of the same data type. It is also difficult to

construct relationships between resources without prior cooperation between the

developers of those resources. On the other hand, OWL and RDF have very specific

language constructs to explicitly define the relationships between objects. This makes

the semantic languages very good at creating taxonomies and reconciling the different

taxonomies that various organizations may create. Where the semantic languages run

into trouble, however, is when one tries to build a data-centric application. The very

flexibility that is such a positive feature in some situations becomes a negative when an

application must count on a certain data field being present in every object it encounters

(Forsberg and Dannstedt 2000).

OWL may eventually become an appropriate framework in which to build a

collaborative planning support system vocabulary, but the technology is too young to

consider for practical experimentation at this time, and this project did not identify any

information modeling issues that were beyond the capabilities of XML Schema to

handle.

