
Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 73

Chapter 4. Sharing Data through Web Services

Data sharing would seem to be a simple task. Agencies have been making their data

publicly available through the Internet since the 1980s. The World Wide Web in its early

form can be thought of as a big, read-only file sharing network. High-speed networks

allow gigabytes of data to be moved from one place to another in very little time, and the

cost of these networks keeps decreasing. So why is sharing data still a problem?

In the buildout analysis, a host of data sources are used. In the case of zoning, the

primary challenge was translating each town’s zoning categories into matching categories.

With land use, the big problem was finding and acquiring the most up-to-date data

sources, systematizing their inclusion into the analysis. The latest data is usually the most

disaggregated, and in the hands of the smallest organizations with the least incentive to

participate in a larger system. In this case these are the developers who are building the

newest residential subdivisions.

Sharing data with government, and supporting planning support systems are not the

primary mission of developers, yet highly detailed data sets are critical in an urban

information infrastructure. They are usually created and maintained by small, local

organizations, so there must be a mechanism for data publishing that conforms to their

level of technological sophistication. However, at the other end of the spectrum the

system must be sophisticated enough to support complex analyses. This chapter lays out

a Web services strategy for meeting these seemingly conflicting goals.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 74

WSDL

We start with a very simple example, because an important design element is the

ability to offer simple solutions for simple requirements. In this case, the requirement is

to enable an organization to publish spatial data as easily as they publish Web pages. The

most common spatial data format is the ESRI Shapefile. Shapefiles are like Adobe PDF

files in that the data format is public and free to use, and the files are small and easily

emailed, making the Shapefile the de facto standard in the GIS world. Instead of simply

placing these files on a Web site, publishing them through a Web service interface allows

the data to be more tightly integrated into information processing systems, hopefully in a

more fully automated manner.

First of all, it is important to emphasize the similarities between a Web site and a

Web service. In the strictest sense, any part of a Web site can be a Web service if it is

described formally. For example, a Web page is a text file containing data in Hypertext

Markup Language (HTML). It is accessed using the Hypertext Transfer Protocol

(HTTP) by sending a GET request to a particular Universal Resource Locator (URL). If

the previous two sentences are written formally in a particular dialect of XML called

Web Services Description Language (WSDL), the Web page becomes a Web service.

Code Listing 4-1 presents a simple WSDL file that serves to publish a Shapefile as a

Web service. A WSDL file has four sections, service, binding, interface, and types.

The service section tells a user what Web address to access in order to invoke the Web

service. The interface sections tells the user what commands the service understands,

and the types section describes the format of these commands and the responses that

may be returned. The binding section has technical details relating to how the commands

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 75

described in the interface section must be expressed in a particular language. A service

could have one interface and many bindings, meaning that the same command can be

expressed in many different languages. Another important concept is that the WSDL

expression of a service is an abstraction. There could be other Shapefiles on this Web

site, and they may or may not be “published.” There could also be other services that

“publish” the same data, but use a different WSDL file—meaning that the data is

published in a different way to a different audience.

In this way the Web service can be crafted to meet the exact requirements of an

organization. This can be a useful concept if we think of the WSDL file as bridging the

gap between organizational and technical concerns. In formally describing the data

sources, and the means of accessing them in a highly structured manner, WSDL

becomes not only a technical solution to data sharing, but a contract between the data

provider and the data user. This is the contract that trading partners require to ensure a

stable relationship in regards to information exchange.

Basic Data Sharing: one Shapefile

In order to publish a Shapefile as a Web service, three things must be put on a Web

server:

1. The data files being published.

2. A WSDL file describing certain generic aspects of a Shapefile.

3. An XML file describing the specific Shapefile being published.

The generic aspects of a Shapefile are described in the types section of Code Listing

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 76

4-1. We see there an XML Schema element called ShapefileWriter, named so to

distinguish between a service message that outputs, or writes, a Shapefile, and one that

ingests, or reads one. Note the XML attribute srsName. All spatial data has a particular

spatial reference system (SRS)—a way of referencing locations on the earth.

Cartographers have hundreds of different ways of doing this, based on tradeoffs

between accuracy, scale and other considerations. These different systems have all been

given a name, and that is what would be stored in the srsName attribute. of the

ShapefileWriter element. Shapefiles store their data in three files having .shp, .dbf, and

.shx suffixes. The locations of these files are specified in the ShpFile, DbfFile, and

ShxFile elements as URLs.

The interface, binding, and service sections combine to say that the Web request,

http://www.city.us/wetlandsShapefile.xml, will be answered with an XML file

conforming to the XML Schema defined by the ShapefileWriter element. In this case,

a possible response is shown in Code Listing 4-2. A small, unsophisticated agency could

put the two XML files on their Web site along with the three Shapefile components, and

consider the data published by giving interested parties the URL to the WSDL file. This

is the bare minimum required to participate in the collaborative framework envisioned in

this paper.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 77

Code Listing 4-1: WSDL file for Shapefile publishing

<definitions name="DataPublishing”>

<types>
 <xs:schema targetNamespace="http://web.mit.edu/pamml.wsdl">
 <xs:element name=”ShapefileWriter” type=”ShapefileWriterType”/>
 <xs:complexType name=”ShapefileWriterType”>
 <xs:sequence>
 <xs:element name=”ShpFile” type=”xs:anyURI”/>
 <xs:element name=”DbfFile” type=”xs:anyURI”/>
 <xs:element name=”ShxFile” type=”xs:anyURI”/>
 </xs:sequence>
 <xs:attribute name=”srsName” type=”xs:string”/>
 </xs:complexType>
 <xs:element name=”NullMessage” nillable=”true”/>
 </xs:schema>
</types>

<interface name="PublishDataInterface">
 <operation name="GetData" pattern="http://www.w3.org/2003/11/wsdl/in-out">
 <input message="tns:NullMessage"/>
 <output message="tns:ShapefileWriter"/>
 </operation>
</interface>

<binding name="PublishDataBinding" type="tns:PublishDataInterface">
 <http:binding verb=”GET”/>
 <operation name=”HTTPBindingGetDataOperation>
 <http:operation location=”/wetlandsShapefile.xml”/>
 <input>
 <http:urlReplacement/>
 </input>
 <output>
 <mime:content type=”text/xml”/>
 </output>
 </operation>
</binding>

<service name="PublishDataService">
 <documentation>Geospatial data accessible from this server</documentation>
 <endpoint name="DataServiceURL" binding="tns:PublishDataBinding">
 <http:address location="http://www.city.us"/>
 </endpoint>
</service>

</definitions>

Code Listing 4-2: XML instance document for Shapefile publishing

<ShapefileWriter srsName=”EPSG:26986”>
 <ShpFile dataFile=”http://www.city.us/wetlands.shp”/>
 <DbfFile dataFile=”http://www.city.us/wetlands.dbf”/>
 <ShxFile dataFile=”http://www.city.us/wetlands.shx”/>
</ShapefileWriter>

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 78

A full explanation of the WSDL specification is beyond the scope of this work.

However it is important to note a few characteristics of this approach. A WSDL file is

quite complex, and a small organization would probably need to contract out for its

development. But still it is only a text file, so no additional software or hardware, beyond

what is required to publish Web pages, is needed to participate in what will be shown to

be a sophisticated system. This point is so important because it matches so well the way

organizations function. Most organizations—even small non-profits—are able to initiate

large, complex projects because it is at the beginning when the project’s champions are

still in place and there is usually some commitment of resources. Problems usually arise

over time, or after the project is “officially” over (meaning no longer explicitly funded),

when time, maintenance and upkeep must be incorporated into a general operational

cost structure. With finite resources and turnover in leadership, old projects tend to lose

funding and time commitments and cease to operate if their upkeep requires any

extraordinary effort. In publishing this Web service we have a complicated project

initiation stage, where the data and XML files must be created and posted on the Web

site, but a simple maintenance stage that only requires the upkeep of a Web server,

which is probably critical to other organizational initiatives as well.

Professional Data Sharing

The previous section focused on the requirements of small agencies whose

technology infrastructure was limited to a Web server. This is a sensible baseline

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 79

technology, considering that even millions of individuals in the U.S. have their own Web

site. The implementation strategies outlined above do not meet the needs of

professionals, however. GIS agencies, planners, assessors, and the like have broader

requirements, and a more sophisticated technology infrastructure, than a basic Web

server. In this section we address the needs of these more traditional spatial data

providers. Generally, these are municipal, regional and state agencies that publish

numerous data sets, often in multiple formats. Sometimes these data sets do not reside

on disk, but in a database, or are generated on request. Another important characteristic

of these kinds of organizations is that they often update their data, so their customers

must be made aware of this fact and consider the update event in managing their own

business processes. Finally, these agencies are concerned about their data’s provenance.

Making sure their users know when a data set was created, last updated, or its level of

accuracy are concerns that have significant organizational, if not legal, ramifications.

Metadata

Information about a data set is generally referred to as metadata. The subject of what

should be recorded in metadata is an active field of inquiry. In the U.S., the Federal

Geographic Data Committee (FGDC) has for over a decade championed the FGDC

Metadata Standard. Internationally, the International Standards Organization (ISO) has

issued a standard called Geographic Information — Metadata, which is commonly

referred to by its document identification number, ISO19115. What these organizations

are trying to do is to capture, in broad terms, the general characteristics of geographic

information so that potential users can search for information relevant to their task, and

quickly decide whether that information meets their needs. This involves capturing

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 80

spatial metadata, such as the geographic extent of a data set, attribute metadata, such as

the names and data types of attributes, and administrative metadata, such as the

responsible agency, date of creation, and update frequency.

Metadata is not the focus of this research, but it certainly plays a complementary

role. The latest metadata standardization efforts of organizations like the FGDC, ISO,

and OpenGIS rely on XML technologies, so the XML-focused work presented here can

easily incorporate metadata by simply using XML’s built-in extensibility mechanisms.

Code Listing 4-3 supplements the XML definition of ShapefileWriter from Code

Listing 4-1 to support metadata. A new element, Metadata, is added to the object, and it

is defined in a very general way in the MetadataType object. This is simply an object that

can have any XML content in it, allowing an organization to incorporate their metadata

efforts with their distributed planning support systems work.

Code Listing 4-3: Adding metadata to data

<xs:element name=”ShapefileWriter” type=”ShapefileWriterType”/>

<xs:complexType name=”ShapefileWriterType”>
 <xs:sequence>
 <xs:element name=”Metadata” type=”MetadataType”/>
 <xs:element name=”ShpFile” type=”xs:anyURI”/>
 <xs:element name=”DbfFile” type=”xs:anyURI”/>
 <xs:element name=”ShxFile” type=”xs:anyURI”/>
 </xs:sequence>
 <xs:attribute name=”srsName” type=”xs:string”/>
</xs:complexType>

<xs:complexType name=”MetadataType”>
 <xs:sequence>
 <xs:element name=”Publisher” type=”xs:string”/>
 <xs:element name=”Date” type=”xs:date”/>
 <xs:any minOccurs=”0” maxOccurs=”unbounded”/>
 </xs:sequence>
</xs:complexType>

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 81

Obj e c t inheritance , and sharing mult iple f i le s through a s ingle s ervi c e

The number of common spatial data formats seems endless. Organizations that

publish spatial data often make it available in multiple formats, to support the various

software environments of their users. There are a number of file-based formats that are

similar to Shapefiles in that they are defined by the locations of their component files.

Another big class of spatial data format is the spatial relational database. This includes

Oracle Spatial, IBM DB2, PostGIS, and MySQL. Accessing data in these formats

generally involves making a database connection, which requires some authentication

and network location information. An example of how a PostGIS data source could be

modeled is shown in Code Listing 4-4.

Code Listing 4-4: Accessing spatial data in PostGIS

<xs:element name="PostGISWriter" type="pamml:PostGISWriterType"/>

<xs:complexType name="PostGISWriterType">
 <xs:sequence>
 <xs:element name="User" type="xs:string"/>
 <xs:element name="Passphrase" type="pamml:PassphraseType"/>
 <xs:element name="Host" type="xs:anyURI"/>
 <xs:element name="Port" type="xs:int"/>
 <xs:element name="Driver" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="srsName" type="xs:string"/>
</xs:complexType>

Notice that, like ShapefileWriter, PostGISWriter has the srsName attribute. It

would also have the Metadata element, if fully defined, but instead of repeatedly defining

objects that are common to many other objects, XML allows objects to inherit the

characteristics of another. What we would like to say is that every data model in our

system may have metadata, and must have a spatial reference system definition. Code

Listing 4-5 expresses this.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 82

Notice that Metadata is defined in the ModelType object. Here we introduce the

concept that some data models might not represent spatial data. Every model may have

metadata, but those that represent spatial data also have a spatial reference system (the

srsName attribute modeled in the GeoData object). The concept of inheritance will be

used extensively in this work. It not only provides clarity to an information model, but

offers practical benefits in system implementations.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 83

Code Listing 4-5: An object-oriented model of spatial data

<xs:element name="Model" type="ModelType"/>
<xs:complexType name="ModelType">
 <xs:sequence>
 <xs:element ref="Metadata" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="GeoDataType">
 <xs:complexContent>
 <xs:extension base="ModelType">
 <xs:attribute name="srsName" type="xs:string" use="required"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:element name="ShapefileWriter" type="ShapefileWriterType"/>
<xs:complexType name="ShapefileWriterType">
 <xs:complexContent>
 <xs:extension base="GeoDataType">
 <xs:sequence>
 <xs:element name="ShpFile" type="xs:anyURI"/>
 <xs:element name="DbfFile" type="xs:anyURI"/>
 <xs:element name="ShxFile" type="xs:anyURI"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:element name="PostGISWriter" type="PostGISWriterType"/>
<xs:complexType name="PostGISWriterType">
 <xs:complexContent>
 <xs:extension base="GeoDataType">
 <xs:sequence>
 <xs:element name="User" type="xs:string"/>
 <xs:element name="Passphrase" type="PassphraseType"/>
 <xs:element name="Host" type="xs:anyURI"/>
 <xs:element name="Port" type="xs:int"/>
 <xs:element name="Driver" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:element name="GeoDataModels" type="GeoDataModelsType"/>
<xs:complexType name="GeoDataModelsType">
 <xs:sequence>
 <xs:element name="GeoDataModel" type="GeoDataType" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

Developing a better object-oriented data model also provides flexibility when we

look at publishing more complex data services. In theory, multiple data sets could be

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 84

published using the strategy recommended above (for a small agency publishing one

Shapefile). In practice, however, this system could be difficult to maintain for the

publisher, because it requires each data set to have its own WSDL file, and since they will

all be very similar, making a small change, such as updating the agency’s phone number,

requires changes to many files. The way organizations have traditionally published data

has been to advertise one Web site with data download functionality. Perhaps this “data

warehouse” paradigm is less compelling in a Web services framework, and it is better to

use the one data set per service concept, but that is a debate for another time. Here we

simply show that the data warehouse idea can be supported.

Code Listing 4-6 describes a Web service that publishes multiple data sets in multiple

formats. The main difference between this service and the basic one is that there must be

a “conversation” between the client and the service to determine which data set to give

the client and in what format. In the most general sense, this is a search task. The client

is searching for data of a particular type, and will be able to identify it by some

characteristic, like its name, subject matter or geographic region. Searching and

cataloging will probably only be done well by specialized services. This is the case with

the Web in general. Individual Web sites used to all have their own internal search

engine, but nowadays most sites let Google handle search.

While a handful of the largest spatial data libraries may implement their own search

and cataloging functionality, most will only need to publish a short list of data sets in

their holdings. This is best accomplished by creating an object that lists spatial data

models. The GeoDataModelsType object shown in Code Listing 4-5 fills this role. Code

Listing 4-6 shows how that list of available data sources is accessed by making a

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 85

GetDataListing request to the service (in this example, the service is invoked using a

SOAP binding). From this list, the user can choose the data set they desire. The final

problem to solve is how services uniquely identify data sets. The most common way of

doing this is to give every object a unique ID. While this requires some mechanism to

ensure that the ID is unique, in the Internet space this is usually made easier by the

ability of an organization to prefix the identification token with their Internet domain

name, avoiding cross-organization naming problems. In order to employ this strategy a

new attribute must be added to all of our model objects, so we add an id attribute to the

ModelType object. This allows the requesting client to get at the id attribute of the

model, which is needed to make a full model request using the GetDataSourceByID

message of the GetDataSource operation.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 86

Code Listing 4-6: Service description (WSDL) for data publishing

<definitions name="DataPublishing”>
<xs:import namespace="http://web.mit.edu/pamml"
 location="http://web.mit.edu/pamml.xsd"/>
<types>
 <xs:schema targetNamespace="http://web.mit.edu/pamml.wsdl">
 <!—- insert elements from Code Listing 4-5 -->
 <xs:element name="GetDataListing" nillable=”true”/>
 <xs:element name="GetDataSourceByID" type="xs:string"/>
 </xs:schema>
</types>

<interface name="PublishDataInterface">
 <operation name="QueryData" pattern="http://www.w3.org/2003/11/wsdl/in-out">
 <input message="tns:GetDataListing "/>
 <output message="tns:GeoDataModels"/>
 </operation>
 <operation name="GetDataSource" pattern="http://www.w3.org/2003/11/wsdl/in-out">
 <input message="tns:GetDataSourceByID"/>
 <output message="tns:GeoDataModel"/>
 </operation>
</interface>

<binding name="PublishDataSOAPBinding" type="tns:PublishDataInterface">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="QueryService">
 <soap:operation soapAction="http://www.scituate.ma.us/QueryService"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="GetData">
 <soap:operation soapAction="http://www.city.us/DataService"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>

<service name="PublishDataService">
 <documentation>Geospatial data accessible from this server</documentation>
 <endpoint name="DataServiceURL" binding="tns:PublishDataSOAPBinding">
 <soap:address location="http://www.city.us/DataService"/>
 </endpoint>
</service>

</definitions>

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 87

Sharing data in mult iple formats

In Code Listing 4-6 we did not explicitly define a mechanism for publishing the same

data set in multiple formats. We only devised a way to publish multiple data sets. Those

data sets could represent the same data, but it would be nice to have a way to make this

relationship explicit. The concept that an output data source is really one concrete

representation of some abstract data object is an important one, though. The unique ID

just discussed pertains to one particular concrete instance of the data—a Shapefile,

PostGIS source, etc.—not the underlying data model, which should be described aside

from its output format. For our data modeling efforts, this means that any object that

outputs data should have some internal representation of spatial data, as shown in Code

Listing 4-7, where ShapefileWriter and PostGISWriter now have an internal

GeoDataType object. If an organization published a data set in Shapefile and PostGIS

formats, this internal object could be the same (have the same ID), although the

ShapefileWriter and PostGISWriter objects would have different IDs (and would

rightly be semantically different objects). The information modeling tools required to

design this structure are readily available in the XML language, making it easy to add this

level of inheritance, indirection and nesting.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 88

Code Listing 4-7: Modeling spatial data output

<xs:complexType name="ShapefileWriterType">
 <xs:complexContent>
 <xs:extension base="GeoDataType">
 <xs:sequence>
 <xs:element name="ShpFile" type="xs:anyURI"/>
 <xs:element name="DbfFile" type="xs:anyURI"/>
 <xs:element name="ShxFile" type="xs:anyURI"/>
 <xs:element name="DataSource" type="GeoDataType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="PostGISWriterType">
 <xs:complexContent>
 <xs:extension base="GeoDataType">
 <xs:sequence>
 <xs:element name="User" type="xs:string"/>
 <xs:element name="Passphrase" type="PassphraseType"/>
 <xs:element name="Host" type="xs:anyURI"/>
 <xs:element name="Port" type="xs:int"/>
 <xs:element name="Driver" type="xs:string"/>
 <xs:element name="DataSource" type="GeoDataType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Some practical considerations

In addition to creating a Web services framework, the research agenda included

prototyping applications that implement the services (presented in Chapter 7). From this

experience, a number of issues emerged that did not arise in the pure data modeling

exercise. These do not have a direct significance to any planning problem, but were

crucial in designing a language from which applications could be developed. These

features must be presented now for the upcoming code examples and graphics to make

sense.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 89

Spat ial data typing i s sues

Most important is that the abstract concept of spatial data has little use in application

development. GIS software is designed to work primarily with one of two types of

spatial data, vector and raster. Furthermore, the overwhelming majority of vector data

formats model spatial objects as a set of geometry objects (one of the seven “simple

features” defined in the OpenGIS Consortium Abstract Specification) linked to an

attribute table. Raster data sets are even simpler, with each cell having only one attribute.

The common models for vector and raster data sets are shown in Code Listing 4-8, Code

Listing 4-9, and Figure 4-1, along with the rest of the spatial data model hierarchy used

in this work.

Efficient design of a data processing application requires that the type of data be

known beforehand. It also helps to know what attributes the data set has, as well as their

types. Therefore we include attribute information in the VectorDataType’s AtributeInfo

object. For example, a client may want to access wetlands data in conjunction with a

habitat model. One simple application would be to summarize the different types of

wetlands present. This would require knowing what data attribute contained the

information describing the wetland type, so it is extremely helpful to advertise these

features of the data set. This concept is discussed in more detail later. In fact, only the

most important modeling concepts are discussed in this text. Many decisions made to

facilitate practical implementations are only detailed in the full, working XML Schema in

Appendix A.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 90

Code Listing 4-8: The complete spatial data model hierarchy

<xs:complexType name="ModelType">
 <xs:sequence>
 <xs:element ref="Metadata" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="GeoDataType">
 <xs:complexContent>
 <xs:extension base="ModelType">
 <xs:attribute name="srsName" type="xs:string" use="required"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="VectorDataType">
 <xs:complexContent>
 <xs:extension base="GeoDataType">
 <xs:sequence>
 <xs:element ref="AttributeInfo" minOccurs="0">
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="RasterDataType">
 <xs:complexContent>
 <xs:extension base="GeoDataType">
 <xs:attributeGroup ref="rasterAttributes"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="ShapefileWriterType">
 <xs:complexContent>
 <xs:extension base="VectorDataType">
 <xs:sequence>
 <xs:element name="ShpFile" type="xs:anyURI"/>
 <xs:element name="DbfFile" type="xs:anyURI"/>
 <xs:element name="ShxFile" type="xs:anyURI"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="ASCIIIntegerGridReaderType">
 <xs:complexContent>
 <xs:extension base="RasterDataType">
 <xs:sequence>
 <xs:element name="DataFile" type="DataFileCompressable"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 91

Code Listing 4-9: Spatial and tabular data feature definition

<xs:element name="AttributeInfo" type="pamml:AttributeInfoType"/>

<xs:complexType name="AttributeInfoType">
 <xs:sequence>
 <xs:element ref="pamml:Attribute" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<xs:element name="Attribute">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="dataType" type="xs:anySimpleType" use="required"/>
 <xs:attribute name="minVal" type="xs:string" use="optional"/>
 <xs:attribute name="maxVal" type="xs:string" use="optional"/>
 <xs:attribute name="query" type="xs:string" use="optional"/>
 </xs:complexType>
</xs:element>

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 92

Figure 4-1: Common spatial data objects

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 93

Performance i s sues

One of the biggest shortcomings to distributed systems is the tremendous difference

in performance between a desktop application using hard drive-bound data, and an

Internet-based application. Whether or not this is actually the case, people seem to be

uncomfortable with the idea that the data underlying their work is out of their control.

They may not articulate their feelings in this way, but it was felt that to have widespread

acceptance, a key design feature of this Web service-based framework would be to offer

the benefits of both systems. At the simplest level, the language describes information

processing in a fully distributed manner. However, there are objects built into the

language that provide “hooks” that software developers can use to implement the system

in such a way that all data and models are stored locally on the user’s computer. We can

still take advantage of the distributed framework, by making sure the software stays

synchronized with the original data sources, but users get the performance benefits of

using data on their hard drive, and the peace of mind of knowing that no one can

arbitrarily cut off their access to the data. This last feature does in fact have a direct

planning application, in that one of our target audiences is small, community-based non-

profit organizations, who often have a (real or perceived) adversarial relationship with

government agencies, and are therefore not likely to adopt a system that relies

completely upon a constant level of cooperation with city hall and the state house.

In order to provide users with these benefits, a few additional objects must be added

to the language that will only be used by software implementers, not end users.

RemoteInfo, in Code Listing 4-10 is the construct that provides the language hooks that

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 94

software can use to implement local caching schemes. Consider that the model being

read is potentially a copy whose origin is unknown. The model may have been acquired

by a Web search, or someone may have emailed it to you. In that case, you have a file

sitting on your computing device (which could be a computer, mobile phone, etc). You

know that your computer can not execute this model, so it must have a means of telling

you how it can be executed, and this requires semantics describing the original location

of the model description (the ModelLoc object), and the location of a computer that is

able to execute the model (the ModelRunnerLoc object). Those two objects make

distributed computing more flexible. The next object, LocalCache, is the one that

enables the local storage of data. Notice that LocalCache is itself a Model, which does

not need to be of the same type as the original model. This allows the implementing

software to, for example, cache a complex spatial operation as a simple Shapefile, while

still having the option to re-compute the analysis from the remote source when desired.

This example underscores the importance of PAMML’s highly decomposable design.

The abstraction of a spatial processing operation into a function that outputs a vector

data set, combined with the fact that any PAMML operation will output only one data

set, creates a very simple basic structure, which greatly facilitates the loose coupling of

distributed resources.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 95

Code Listing 4-10: Objects that make distributed computing perform like desktop computing

<xs:element name="RemoteInfo" type="RemoteInfoType"/>

<xs:complexType name="RemoteInfoType">
 <xs:sequence>
 <xs:element name="Name" type="xs:string" minOccurs="0"/>
 <xs:element name="ModelLoc" type="xs:anyURI"/>
 <xs:element name="ModelRunnerLoc" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="LocalCache" type="LocalCacheType" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="LocalCacheType">
 <xs:sequence>
 <xs:element name="Cached" type="xs:boolean"/>
 <xs:element name="CachedTime" type="xs:dateTime"/>
 <xs:element name="NextUpdateTime" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="LocalModel" type="ModelType"/>
 </xs:sequence>
</xs:complexType>

Figure 4-2: RemoteInfoType and LocalCacheType object diagrams

This chapter has laid out a strategy for addressing one of the primary causes of high

information management costs, the process of moving data sets from producers to users

and into analysis systems with a minimum of human intervention. In the past decade or

so, we have made great strides in our ability to distribute data efficiently. Most data are

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 96

stored in electronic format, and content encoding formats are standardized enough so

that translation is more of an annoyance than a real barrier to use. What we have not

addressed until now is the orchestration of the process to the level of detail where

human intervention can be replaced by computer-to-computer negotiation. This not only

achieves significant cost reductions through automation—replacing expensive human

resources with cheap computing cycles—but also creates the opportunity for new levels

of efficiency, and better systems. For example, this architecture permits software to be

developed that runs a quick analysis based on locally cached information resources, or a

slower, more thorough one that reaches out to remote warehouses to make sure it is

using the most up-to-date data. In the next chapter we build upon this methodology,

adding analysis to the data sharing framework.

