
Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 109

Chapter 6. Prototyping the Buildout Analysis

An important test of the PAMML services framework advocated by this paper is its

ability to model the trial case presented in Chapter 3, the MassGIS buildout analysis.

This empirical experiment is presented here. By referencing the problems identified in

Chapter 3 and detailing how the PAMML framework addresses them, we are able to

argue that PAMML not only is able to reproduce the types of analyses commonly

performed by physical planners, but is also able to address the high costs of collaborative

information management and processing. In this way we go beyond the basic argument,

common in many disciplines, that says that the use of Web services has proven to reduce

costs; therefore if we can rebuild our traditional planning support tools on top of a Web

services architecture, we will naturally reduce costs in the planning discipline. This

argument is persuasive, but one could argue that the planning discipline exhibits unique

characteristics that prevent it from benefiting from the adoption of technologies from

other fields. By explicitly addressing the information management problems exposed in

the buildout analysis, we greatly strengthen the case for PAMML.

Zombie data

Recall the concept of zombie data developed earlier. This is data that are acquired

from its maintainer, then used for months or years, and perhaps modified with local

knowledge, with little consideration for the changes the maintainer may have made over

that time. These data are dead in that they have been disconnected from their living, up-

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 110

to-date sources. Yet they are also alive because their owner is still finding them useful.

The zombie data problem is at the core of the information management cost dilemma.

People have come to expect applications that are lightweight and Internet-aware to have

limited functionality, like the online EOEA buildout tool mentioned earlier, that

aggregates statistics for multiple towns. They have been conditioned to believe

sophisticated, feature-rich analysis tools like GeoVista or ArcView will depend mainly

upon local data sources, and that the data management problem is external to the

analysis software.

This is the key problem with MassGIS’ buildout strategy. They provide excellent

analysis tools, in the form of ArcView and Excel. They also provide a system for

automating analytic processing in the form of ArcView and Excel macros, called the

Buildout Analysis Toolkit. What they do not attend to is the data management question.

This would be fine if information management was not central to the ongoing usefulness

of the analysis. If the data rarely changed the cost of doing things differently would be

out of proportion to the benefits. But this is not the case. Planners do want to

continuously plan—they just have no feasible options to make this cost-effective.

Therefore our task is to deliver the PAMML framework at reasonable costs.

In earlier chapters we discussed the issue of technology sizing. The costs of

implementing a system should be heavily weighted towards the beginning of a project,

when one-time funds are allocated and project advocates are energized. Ongoing costs

must be as low as possible. Otherwise the technology infrastructure will disintegrate

from lack of maintenance. To achieve these low costs, planning IT infrastructure must

utilize general IT infrastructure as much as possible. Here we go into deeper detail,

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 111

showing an operational model of how the PAMML framework addresses the zombie

data syndrome with close attention paid to the technology sizing issue. Table 1 lists a

cost/effort matrix for three different data management strategies. The first, “Send data,”

is the most traditional, involving a data maintainer sending mailing or emailing a data set

to each user. When the data changes, the entire process must be repeated. In the second

strategy, “Publish data: Web site,” which is the current state-of-the-art, the data

maintainer uses the Web to avoid sending updates to each and every user. She instead

updates one copy of the data on a Web site, then informs users so that they can

download it. This strategy has proven to be a great time-saver in that the maintenance

agency no longer has to handle requests for data—the Web is a self-service system—but

the users’ costs have not been addressed.

Table 1: Data publishing system designs

 Send data Publish data:
Web site

Publish data:
PAMML service

(publisher) step 1 Extract from operational
system

Extract from operational
system

Extract from operational
system

(publisher) step 2 Copy to media Copy to Web site Copy to Web site

(publisher) step 3 Publicize updated data
availability

Publicize updated data
availability

(publisher) step 4 Process data requests

(publisher) step 5 Send media Design-Publish Web page Code-Publish WSDL, XML

(user) step 6 Copy from media Download from Web site Subscribe to data service in
PAMML-enabled software

(user) step 7 Import into operational
system

Import into operational
system

Update local cache of the
service

Maintenance steps
(bold)

Repeat 1,2,3,4,5,6,7 Repeat 1,2,3,6,7 Repeat 1,2,7

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 112

The PAMML strategy requires many of the same initial publishing efforts, but then

the software takes care of ongoing updates between data publishers and users. As

described in Chapter 4, the simplest data publishing technique PAMML offers is much

like posting data files on a Web site. The main difference is that instead of designing an

HTML Web page to complement the data file, the publisher designs a PAMML WSDL

(Web Services Description Language) file and a PAMML data instance file. To make use

of the data, a user “subscribes” to the data service, and from that point on, the user’s

software is able to create a local copy of the data set (to maximize performance), and

periodically check back with the original data publisher for updates. This reduces the

burden on users and publishers, minimizing the ongoing, operational cost of information

management. The costs of keeping the data up to date are shifted to the software design

and development stage, where they can be spread over thousands of users, instead of

having thousands of users each develop their own individual solutions.

PAMML also addresses another type of zombie data problem. Data sharing often

occurs without the knowledge of the official data maintainer. In addition to the data

being more likely to be out of date, this leads to situations where data may be used in

ways for which it was not originally intended. Addressing concerns like these motivate

the data cataloging work of agencies such as the FGDC (http://www.fgdc.gov). In the

PAMML framework, the data description file is shared (Code Listing 6-1), not the data.

The new user takes this XML file and uses it to subscribe to the data service directly

from the publisher. This serves two purposes. First, the new user is getting the latest

version of the data. This is a nice feature, but the real significance of this strategy is that

users are not passing data sets around. In effect they are passing along a contract to engage

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 113

with the data publisher. When the new user attempts to access the data, the publisher has

the opportunity to decide whether or not to “do business” with that user. If the data are

public and open, nothing important happens at this stage; it is simply sent to the user.

However, if the data are sensitive in some way, the publisher would at this point check

the user’s credentials, and act accordingly. If, of course, users do not want to

intentionally subvert the system, they will choose to use the PAMML framework over

the old ways because, as just discussed, PAMML is cheaper and easier. And in doing so,

we strengthen the contractual relationship—social, technical, or business—between data

publishers and users.

Code Listing 6-1: XML instance document for Shapefile publishing

<ShapefileWriter srsName=”EPSG:26986”>
 <ShpFile dataFile=”http://www.city.us/wetlands.shp”/>
 <DbfFile dataFile=”http://www.city.us/wetlands.dbf”/>
 <ShxFile dataFile=”http://www.city.us/wetlands.shx”/>
</ShapefileWriter>

In the case of an isolated data set, the idea of a contract between publisher and user

seems trivial. It becomes much more significant when discussing a real model like the

buildout analysis, where a number of contractual issues could arise. Is the client using

server processing resources? If so, should we allow this? Are they a public agency, an

individual, or a land developer? Should we charge for-profit enterprises for access? All

these issues have technical solutions, and PAMML applications, by virtue of their

adoption of Web services, are likely to be able to respond to them cheaply, because they

can use generic authentication and security techniques designed for any Web service,

instead of inventing new systems for government or planning.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 114

The zombie data discussion started with the goal of reducing the costs and

complexity (effort) of keeping data up to date. We have just shown how PAMML can

solve that problem, but there is a more general issue to address. As stated earlier, there is

no real difference between a data set and a model. A data set could be thought of as a

concise summary of some analytic process. Therefore, any solution to the zombie data

problem should also apply to analytic models. In fact, this is the case. Recall that in a

PAMML framework, the user gains access to the data by subscribing to a PAMML

service. The details of this subscription were contained in a PAMML XML data instance

file. It would have been more accurate to call that a model instance file, because we

know that PAMML does not distinguish between the two. So in the PAMML

architecture—from the user’s perspective—there is no difference between accessing a

data set and accessing a complex model. However, from the publisher’s perspective, the

difference may be great. If the publisher’s intent is to provide interactive access to the

model, then the publisher probably needs more than a simple Web server to achieve this

goal. They must first describe the model in PAMML. The simplest way to do this is to

use the GenericModel object, which allows one to give the model a name, then describe

its inputs (Figure 6-1) and outputs (Figure 6-2). Then they must implement some sort of

PAMML-enabled data processing software so that users can change model parameters

and run their own analyses. This more complex system is well within the capabilities of

agencies, like MassGIS, who may desire them, so it is believed that PAMML offers a

good match between the sophistication of agency needs and the required sophistication

of their IT infrastructure.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 115

Figure 6-1: Buildout model inputs (a representative sampling)

Figure 6-2: Buildout model outputs (a representative sampling)

A NOTE ON GRAPHIC CONVENTIONS:
This chapter includes a number of box
diagrams like those shown here. These
diagrams show the process of performing
analytic operations to create new data sets,
which are in turn used in the next stage of
operations. The diagram should be read
from bottom to top, with the upper-most
box being the end result of all data
processing. The boxes all have a name,
and an operation type—the text in curly
brackets—that corresponds to an XML
element in the PAMML XML schema (see
Appendix A). Note the small shapes at the
top and center of each box. This shape
represents the type of data output by this
box. A circle represents Vector data output;
a square represents a table (or 2D matrix);
a triangle is a single numeric value
(Boolean, integer, or decimal). A star has
multiple outputs. The color-coding of the
boxes provides a quick visual hint relating
to the type of PAMML model as well as its
output data type (color differences may be
difficult to distinguish in a black and white
copy of this document).

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 116

Stakeholder participation

If this research did nothing but address the zombie data-model problem, it would be

a success. But the PAMML framework also is able to make progress on a problem with

stakeholder participation observed in the buildout analysis. There we saw a disconnect

between the analysis effort and the debate, discussion, and alteration that occurs when

the analysis is brought to a municipality, as discussed by Hodges (2004). While social

scientists may capture this debate after the fact, this rarely happens at a time when

something can be done about it. Even when there is an effort to drive new analyses, or

“model runs,” based on stakeholder input, this usually requires the creation of a separate

system designed specifically for use in meetings, or other venues far from the analyst’s

workbench. Sometimes this is necessary because each model runs takes hours or days to

complete, but more often it is because the modeling software is not designed to: a) be

accessed outside of the office; and b) have its “data analyst” user interface be replaced by

a “decision-support” user interface.

PAMML facilitates solutions to these non-performance based problems in many

ways. PAMML is inherently designed to be accessed outside of one office because of its

Web services roots. All operations occur via Internet protocols, whether they are limited

to one computer in one office, or multiple computers scattered across the globe. The

ability to apply different user interfaces to a PAMML model is even more significant.

This feature is largely a result of using XML, which was designed for this purpose. The

technology of how this works is discussed in more detail below.

So we see that the early design decisions to build upon standards like XML and Web

services help address concerns that have often been seen as idiosyncratic of the planning

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 117

profession. But one thing we still must do ourselves is to capture public debate and

discussion, and integrate it with modeling efforts. Recall that we have designed a

PAMML object called AltModel to facilitate this. In the buildout analysis, its most

obvious use would be to capture different zoning scenarios (Figure 6-3), so that zoning

changes could be evaluated based on their impacts on future growth, such as changes in

the number of schools required, or the increased stress on water and sewer systems.

Figure 6-3: Buildout model showing alternative zoning options

This should by no means be seen as a complete response to the stakeholder

participation issue, but rather a starting point for further research. We see below how

well the PAMML framework handles rich user interfaces, but the more interesting issue

here is the types of information one might want to capture. For example, planners often

use voting and “weighting and rating” games in participatory settings. These techniques

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 118

require an expanded information model from that presented here, but if the PAMML

framework, or at least XML, is used as a starting point, the likelihood of being able to

integrate the technologies is high.

Collaborative Planning

There are, of course, many more potential points of exploration and debate other

than zoning regulations. For example, environmental issues are always a concern. People

might debate how far away from wetlands and environmentally sensitive habitat

development must be. Or they might be interested in seeing how important are the

presence of multiple environmental factors in restricting the right to build. None of

these issues are illustrated in Figure 6-3, because it is based on the GenericModel, which

provides a higher level view of the analysis. We can, however, articulate these issues by

modeling them in much more detail, which in turn permits a finer level of debate. Doing

so brings analysis out of the modeler’s workshop and into the public forum. This has

always been the focus of participatory PSS, but those systems have rarely been

implemented in a way that maintains a direct connection between participatory or

collaborative activities, and the original analysis.

As a very basic example, recall our experience with buffer models from the previous

chapter. Say that, in the buildout model, streams are protected by a 100-foot buffer zone,

and this is described by a buffer model (as appears in the bottom-left corner of Figure

6-6, which will be described shortly), which is comprised of a value model and a vector

data set. As full-fledged models in their own right, the buffer, the value, or the vector

data could each be observed and replaced with alternatives. The result is that people with

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 119

different expertise can focus on exploring and refining different sections of the model,

and this is what expert collaboration is about.

The buildout analysis was not difficult to express in PAMML, although the XML

code is not easy to follow without careful study. The model is more likely to be seen

using some sort of visual analysis tool, and this is how it is presented here. Remember

from the earlier discussion of the buildout analysis that the general flow of the analysis

follows these steps:

1. Take already developed land as-is. No redevelopment of these areas.

2. Take other areas and remove places under permanent protection from

development.

3. Identify areas with partial restrictions on development.

4. Calculate maximum residential and commercial development for areas identified

in step 2, and use step 3 to apply a penalty factor, arriving at a final buildout

value for the area.

Figure 6-4 shows a model of step 1. Areas already developed are specified using

MassGIS landuse GIS data and selecting out those areas whose land use identifies them

as already being developed. This is the Reclass model named developed, in land use

database. Note that a Reclass model is comprised of a vector data set, landuse, and a

table (in purple), MacConnell land use. This table is used to reclassify the land use data

set, mapping values of the LU property to values of a new property, DEV. In this case, the

reclassification table says that for the LU property of landuse, all values equal to or less

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 120

than 7 map to a DEV value of 0. All values between 8 and 13, inclusive, map to a DEV

value of 1, and so forth.

The landuse data is up to ten years old in some places, so it is useful to supplement

it using local surveys—the newlu model—as well as the latest projects from

developers—the subdivisions model. These are combined via a Union operation to

form a model of newly developed subdivisions. These are in turn Union-ed with the

older data to create a full model of developed land, which we simply call developed. This

is the fine-grained model of developed land that the planner creating the buildout model

would use. However, someone else might have no need to know all the considerations

that led up to the overall conception of developed land, only the final result. In this case

they would never need to look deeper than the developed model. At that level of detail

the model looks like a vector data set with a name, which offers human users with

semantic clues regarding the data set’s content.1 They would only see how that model of

developed land was constructed if they drilled down deeper.

Figure 6-5 creates a spatial data layer containing all the various environmental

conditions that could restrict development in a particular area. The final decision on how

greatly they impact development is decided by human judgment, rather than an

algorithm, so the purpose of this model is to do some geographic accounting. The end

result of this is that the analyst has every area of the town tagged directly with its

1 An information community could develop a better strategy for passing along semantic information
other than the name of the model by adding a custom object within the Metadata object, which is a
component of every Model.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 121

environmental issues, so that a decision regarding development potential can be more

easily made.

Figure 6-6 models lands that can not be developed for environmental reasons,

including steep slopes, flood plains, and wetlands. These all go into a model of

partially developable land. The notable characteristic of this model is the great

diversity of primary data sources used. In Massachusetts, environmental data is usually

acquired from MassGIS, who gets it from a federal agency, but performs some further

processing to make it easier to use for regional work. Wetlands data may still be acquired

from other sources, and three possible choices are illustrated in this model. In fact,

MassGIS specifically discusses this wealth of choice for wetlands data, so its inclusion

here is a necessity, not just a nice way to use the Alternatives model discussed in the

last chapter.

Figure 6-4: PAMML model of developed land

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 122

Figure 6-5: PAMML model of lands with development constraints

Figure 6-6: PAMML model of land that is exempt from development for environmental reasons

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 123

Figure 6-7: PAMML model of buildout
(“partially developable”, “environmental restrictions”, and “developed” models are summaries of models shown above)

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 124

Figure 6-7 illustrates the final steps of the buildout analysis. Reading from the

bottom, developed land and areas with full environmental restrictions are combined

using a union model to create no-build areas. These areas are then subtracted from the

town using the zoning data layer so that the zoning codes can be attached to the areas

that are left in are model of undeveloped land. We then remove permanently protected

openspace, to create a model of unprotected, undeveloped lands. Next we attach the

attributes of the partially developable areas model to create the model, partial and

fully developable areas.

Now we encounter the most important feature of this diagram, the reclassification,

or lookup, tables. Partial environmental constraints is the table that an analyst

would create to identify how big an impact partial constraints (from Figure 6-5) would

have on development of that particular piece of land. In the MassGIS work, this step

was performed in Microsoft Excel, whereas ESRI ArcView was used for the spatial

operations, and this made it a bit difficult to track the analysis from start to finish. These

two software programs could still be used to execute the analysis if they developed

support for PAMML services, but PAMML gives us a way to formally describe the

process without depending on any particular software package. This diagram also shows

that this crucial stage of the analysis, being able to be represented as a simple lookup

table, could easily be made available on the Web for interactive scenario generation, even

if the rest of the model was more of a “black box.”

Bus/com/ind land use and residential land use are simply used to dissolve the

model of partial and fully developable land into residential and commercial,

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 125

because they are analyzed differently. The analyst then uses the final two lookup tables,

house lots by zone type and bus/com/ind dev by zone type, to develop maximum

development figures based on the density of development permitted under the zoning

code. Residential buildout and commercial buildout are then merged back together

to create a final, unified view of buildout.

Constituents want to plan continuously, not once. EOEA recognized this, and

provided two avenues for further analysis. The most basic is the online application

described in Chapter 3, which mainly allows a user to get aggregate statistics on multiple,

neighboring communities. The more flexible option is to download all the data sets used

in the analysis, and use them with one’s own software (ArcView and Excel and the

analysis toolkit) to create a custom buildout analysis by changing key inputs such as

building setbacks, road widths, or natural resource protection buffers.

In Chapter 3 we identified the main problem with these options—they are poorly

matched to their user communities. One might imagine regional planning agencies

having the most need for aggregate statistics, but they are also the most likely to be

planning professionals, and desire more sophisticated tools than the Web site provides.

On the other hand, smaller rural and suburban towns have the most use for a system

that allows them to play out scenarios based on changes to local land use regulations, yet

they are unlikely to have the resources necessary to make full use of the ArcView/Excel

system. And even if they did, that system is still flawed in that it exacerbates the zombie

data problem. A local planner is not likely to have the time to: a) acquire and develop the

skills necessary to use the ArcView/Excel system; b) work with other departments to get

the latest zoning and development data; and c) find a way to share these updated data

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 126

sets with regional and state agencies. These activities must all depend upon one another

if we hope to see them always performed.

The PAMML services framework does this. In order to do custom analysis, a local

planner acquires the PAMML model from the state. To run the model, they either buy

commercial software that understands PAMML, or they might remotely access an online

suite of analysis tools that understood PAMML.2 Either way, whether the model

processed the analysis locally in commercial software, or remotely using a Web service,

the core data sets would still be accessed via Web services. The local user could physically

change the model to point to a local copy of the data, but it would be easier to leave the

model alone, and update the original data set. This strategy updates the data for everyone

(who is using the PAMML framework). Note that this framework is flexible. People can

still do things the old way, but it’s easier to do things right. This concept is a key design

feature of PAMML in that the time and effort required to accomplish a task is aligned

with the desired outcomes.

Machine-to-machine interaction

With the detailed model we have now developed, one gets a better picture of how

extensive the opportunities for exploration are, but also how complex even a simple

analysis like buildout can be. We have already digested the model into a diagram instead

of presenting the raw PAMML XML code, and it is still complicated—not because the

2 A state agency like MassGIS might develop and provide local planners access to such a system.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 127

XML technology is cumbersome, but because the process of analysis is inherently quite

intricate when every step is formally articulated.

We struggle to share data and collaborate on analysis in part because it is difficult to

manage all these steps, and this is where the value of a Web services architecture really

becomes apparent. As we observed in the buildout analysis, planning problems usually

require data inputs from many sources, and the expertise of many different kinds of

people. This situation implies that many different types of computing systems are

involved in the solution to any problem. The Web services architecture can be thought

of as a programming language for distributed, loosely coupled computers. This is in stark

contrast to most programming languages, which are designed for developing software

programs that will be run on a single computer on a single operating system.

By using a technology framework designed to leverage industry-wide solutions to

machine-to-machine interaction problems, we do two important things. First, we use a

framework that is well-aligned with the distributed nature of organizational relationships

in planning. Second, we are able to focus on planning problems instead of inventing new

technology solutions from scratch. With a Web services architecture in place, we know

that complex problems can be broken down into more manageable pieces, so that

different people (or organizations) may develop the part of the system in which they

have expertise. We have been able to do this before Web services, but it has been

executed poorly, or at too high a cost. Now we have the tools needed to make machine-

to-machine interaction feasible.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 128

Interactive End Products

While the complexity of information processing may be managed through a

distributed computing architecture, people must still strive to understand problems as a

whole. Clearly interaction with the system must be mediated by applications and user

interfaces that focus on a particular task or audience. The ability to build and interact

with complex models through a visual interface is a hallmark of modern geographic

information systems. Up to now, the case for PAMML has been based mainly on its

importance in accurately capturing the process of information management and sharing,

and through a better articulation of this process, creating the opportunity for automation

and componentization. However, if we hope to ever “plan continuously,” the PAMML

framework must not only save time, money, and effort, but must also drive the rich

visual interfaces that professional planners demand. Visual modeling and analysis

interfaces are common features of commercial software. In the planning field, ESRI’s

ArcGIS is the most popular package. It’s main interface is a map, into which data

sources can be added and styled cartographically. A visual tool called ModelBuilder™

has recently been added to ArcView, allowing users to design an analysis using a wiring

diagram metaphor (Figure 6-8). While ModelBuilder™ captures the modeling process in

a powerful visual metaphor, it does not go beyond being a front-end to an internal

scripting language. It does nothing to expand the analyst’s role beyond that of the

desktop, or enterprise GIS user by, for example, facilitating collaboration across users of

ArcGIS, let alone other software packages. While ModelBuilder is a new product, visual

model building software has been an active area of research in PSS as well as computer

science in general for years. Proposals for generic enterprise modeling and analysis

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 129

toolkits can be found in abundance (Ledeczi, et. al. 1999, Delen and Benjamin 2000), but

more relevant are the geospatial applications. GeoVista (Gahegan, et. al. 2002), shown in

Error! Reference source not found., is probably the most mature. It provides a graphic

interface for spatial data analysis, exploration and visualization. A staff of researchers at

the Pennsylvania State University are tasked with the software’s continued development

and maintenance. Visual Map Algebra (Figure 6-10) is a graphical user interface to

Tomlin’s ubiquitous map algebra raster analysis framework (Egenhofer 1995).

Figure 6-8: ESRI's ModelBuilder, a visual user interface to Spatial Analyst

While these systems have a multitude of useful analysis features, when viewed

through the lens of this work their similarities are more striking than their differences.

All of these systems have two primary characteristics, the artisan work model, and the

lack of any attention to systems interoperability. The artisan model is one where tasks are

accomplished by a few, skilled people in a workshop alone with their tools and materials.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 130

The artisan strives to improve their skills and acquire new tools to produce better

products. This has been translated into software as products with words in their name

like “workbench” or “toolkit,” and the analysis environment and the tools are always

seen to be idiosyncratic of the artisan-user. These products often have sophisticated

tools allowing a user to build their own model, invent new model types, or save the

description of the model for later re-use; but we do not observe an effort to share

models by promulgating a standard language, or support a model structure that supports

multiple users collaborating. This mindset stands in contrast to the PAMML framework,

in which data are not materials, but other tools. And tools must at some level be shared,

which requires systems interoperability. So a key concern of this work is to retain the

useful analytic features and user interfaces of visual modeling software, while using

PAMML to address those aforementioned drawbacks, that hinder progress towards

reducing the costs of planning analysis.

Visual mode l ing

An experiment was performed to see how well PAMML would be able to integrate

with the type of visual model construction environments being advocated. This is a test

of the framework’s ability to appeal to traditional PSS designers and users. The task was

viewed as an exercise to represent objects and their semantics in a visual environment.

As a graphical user interface environment, a generic network diagramming library called

JGraph (http://www.jgraph.com) was used. This provided a set of tools for drawing

shapes, moving them around the screen, connecting them with lines, and automatically

laying out network diagrams. As JGraph was developed in an object-oriented

programming language, Java, it was a relatively straightforward exercise to extend

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 131

JGraph’s standard graphic objects to include a fragment of PAMML XML code. It was

then possible to create JGraph PAMML objects that acquired unique characteristics,

such as color and shape, based on their PAMML type (Figure 6-11). Note that it was

possible to fully replicate the rich graphic conventions used to illustrate the MassGIS

buildout model.

A separate issue was the need to move models from their representation as XML

text in a file, to visual objects on a computer screen. A number of tools were investigated

that could programmatically accomplish this task. It seems that while a number of

toolkits exist to automate the creation of visual interfaces to XML data, none of them

were fully developed enough to use for this work. This could be because XML is not

conducive to this kind of automation, but it is probably only that XML tools are still

maturing; it took many years for good visual HTML editing tools to be widely available,

and XML is only about five years old.

One popular mainstream application with nascent support for visual editing of XML

data is Macromedia Flash MX (http://www.macromedia.com/software/flash/). Its

roots in the Web design world (as compared to the information modeling community)

are quite evident here as Flash has no way of building an interface directly from an XML

Schema. It needs a concrete XML instance document for this. That technique can work

for small, simple documents where every data field is always populated, such as a

purchase order, but in our case, we have an extensive language in which no one model

ever uses the entire vocabulary. In other words, Flash can be taught how to build a user

interface for Buffer models, or ShapefileWriters only, but it offers no tools to simplify

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 132

development of a user interface for the entire language. Hopefully the program will

mature in this respect in coming years.

Figure 6-9: GeoVista Studio's Design Box, showing connected components

Figure 6-10: Visual Map Algebra as used in the Geographer’s Toolkit

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 133

While Flash comes from the community of Web design, Sun Microsystems’ Java for

XML Binding (JAXB) library comes from programmers. JAXB is part of Sun’s Web

Services Developer Pack (http://java.sun.com/webservices/jwsdp/index.jsp). It is

used to generate a Java version of a given XML Schema—in this case PAMML. The

motivation for JAXB, and other similar applications, is that there should be a clear

separation between the translation of an XML vocabulary from text to software, and the

use of that vocabulary within the software program (by contrast, one could imagine a

program that used the XML file as its primary data object, and any information

processing that occurred in the software program would be reflected directly in the XML

that it produced). JAXB was able to read PAMML XML and instantiate it as Java

objects. It was then a simple matter to connect these PAMML Java objects to the

JGraph objects. The library also automated the translation of PAMML back out of Java

and into XML. This was an indispensable tool during the language development phase,

because it allowed applications to be built while the language was still being fine-tuned.

Changing the PAMML Java code was simply a matter of running a script and re-

compiling the program.

While JAXB was a useful tool in the prototyping stage, it does not deal well with

some of the advanced features of XML Schema.3 Once these became important to

PAMML’s design, JAXB could no longer be used. While this was disappointing, the

benefits of JAXB’s automation features are less compelling when dealing with a stable

XML Schema. It is just as easy, and more flexible, to write one’s own XML processing

3 Such as the XML Schema Instance <type> element, more commonly known as <xsi:type>, which is
XML Schema’s mechanism for implementing object-oriented inheritance.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 134

and visualization routines. The failure of JAXB, and the subsequent ability to carry on

without it, underlines one way in which the choice of an XML framework was a sound

initial decision. Despite the relative youth of XML, no barriers were encountered that

suggest that the PAMML Web services framework would impede the research and

development of visual interfaces to analytic models.

Figure 6-11: PAMML modeling using JGraph and JAXB

Non-te chn i cal user in t er faces

The previous discussion has covered rich, visual interface tools geared towards

planners and modeling professionals. However, users with less modeling expertise must

be engaged in the planning process also. This requires that our XML models take on a

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 135

much simpler interface than those just discussed. It is not surprising that PAMML can

accommodate this requirement, but the way the requirement is met is extremely

interesting.

The end result of the buildout analysis is the series of maps shown in chapter 3,

along with a group of statistics like those listed for Sutton, MA in Figure 6-12. We know

that in a PAMML framework, these statistics would be the output of models, which were

described in XML. If we wanted to reproduce the Web page in Figure 6-12 from a

PAMML model (which would allow the page to always display the latest projections), we

could use one of a number of industry-standard XML processing tools that generate

HTML code from XML. This would be cheap, not only because a host of tools already

exist in commercial and open source marketplaces, but also because a host of skilled

labor (Web designers) exists that can develop these applications with little additional

training. Now we find our strategy of embracing mainstream technology taking us

beyond direct reduction of technology costs, and into labor market efficiencies,

underscoring once again the importance of integration.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 136

Figure 6-12: Buildout analysis summary for Sutton, MA

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 137

Figure 6-13: Multiple user interfaces using the same code

The rich, visual modeling environment geared towards analysis professionals was

prototyped at the front end by transforming PAMML XML into a programming

language (in this case Java™), which could then be used within a traditional software

development environment to develop any desired application. That user interface is still

a tool whose output is a PAMML model, which describes an information processing job.

This job must then be executed by an information processing engine, like a GIS system,

which might reside on one computer, or be spread out among many. This strategy could

be adopted to provide non-technical end users with visual interfaces as well. They key

would be to present only limited sections of the model to a user, and design the interface

with the user’s skill level in mind. Figure 6-13 describes this scenario. An XML model is

shown on the right. In the bottom left, the entire model is brought into a visual model

building application like that described above. In the top left, however, we see a small

part of the model (one buffer operation), presented in a much different fashion. One

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 138

variable is shown, and the value is changed by clicking on up and down arrows. In this

case the user’s software is smart enough to generate a preview of the buffer based on the

spatial data set and the distance value chosen by the user.

We could also take an approach similar to that used above for Web page generation.

There are a number of mainstream technologies available to automatically generate user

interfaces from XML documents, most notably Flash and XForms

(http://www.w3.org/MarkUp/Forms/). These are currently too simplistic or immature for

developing applications for modeling professionals, but hold much promise for lighter

weight, simpler applications—especially those designed for Web sites. And once again

the same cost efficiencies would be realized for using mainstream technologies and a

mainstream skill base. By mixing and matching the right XML-aware technologies with

the right audience, we can begin to imagine how even small municipalities, with help

from their regional planning agencies, might be able to provide their constituents with

continuously updated, dynamic, interactive information. The completion of a housing

project could trigger an update of septic loading. Or a new store opening could add

congestion to a traffic model. And most importantly, any data visualization carries with it

the underlying PAMML model description, so that one can imagine “copying” statistics

off a Web page and pasting them into a (PAMML-aware) spreadsheet, which would not

actually copy the text on the page, but the underlying XML PAMML code, so that the

data does not revert to “zombie” status, and the contract between data user and provider

is retained.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 139

This chapter has presented a range of prototyping efforts, from systems design to

actual software development. In each case the information management problems that

are so pervasive in our profession, and are observed in the buildout analysis, were

addressed. In many different ways we have seen that systems built upon the PAMML

framework are likely to be cheap, scale well with organizational needs, and integrate well

with mainstream technology trends. This evidence goes far towards proving that

planning support systems built in this manner have a chance to avoid the systemic

information management problems we observe today.

Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 140

