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Abstract 

This thesis examines systemic problems with the way information is managed and 
processed in planning support systems. We find evidence of these problems when we 
attempt to: develop an analysis without spending most of the time gathering and 
organizing data sets; or build an analysis that can be re-run at low cost; or implement 
systems that interact collaboratively with those of other experts. This research starts with 
the hypothesis that these problems are related and systemic, and that a new paradigm of 
information management is needed if we can hope to address them effectively. 

The research is divided into two main sections. First, we develop a theory about how 
information flows within and across planning organizations, and use the MassGIS 
buildout analysis to understand how physical planning is done in a cross-jurisdictional, 
real-world setting. We find that modern organizations do are good at creating and 
disseminating information, but find it difficult to keep users’ copies of published 
information up-to-date. Furthermore, the technology for building interactive front-ends 
to analytic models is poorly matched to user needs, and the technology for enabling 
cross-organization collaborative analysis is non-existent.  

In the second part of the thesis, we re-architect the information framework, guided 
by our new theoretical foundation and findings from practice. This new framework is 
based on Web services, an emerging technology for connecting information systems 
across organizations. It is called the Planning Analysis and Modeling Markup Language 
framework, or PAMML, consisting of an information processing vocabulary expressed 
in XML Schema, Web services based on the schema, and guidance on how to best use 
the framework to encourage the interconnection of planning and mainstream 
information technology. 

We find that the PAMML framework can lower costs by leveraging mainstream 
technology, simplify the most basic data sharing activities, yet still allow organizations 
with different levels of technical sophistication to collaborate. PAMML captures the 
semantics of spatial planning problems, allowing them to be decomposed into 
fundamental information processing operations. Regarding user interfaces, we show that 
PAMML’s structure allows multiple end user applications aimed towards different 
audiences to be easily built from the same core PAMML document. 
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Chapter 1.   Introduction 

The way planners gather and analyze information is archaic and extremely expensive. 

It has been this way for decades, and unlike other industries, it does not seem to be 

getting cheaper. Until the planning information systems community addresses this 

problem in a holistic manner, data-based analysis will never fulfill its potential to inform 

urban planning.  

Few ever dispute the common folklore that 80-percent of any analysis effort is spent 

gathering data, leaving 20-percent of one’s resources for the actual work that needs to 

get done. This is not a new realization. At least ten years ago we believed that the rapid 

increase in GIS adoption, and the ubiquity of data in electronic form, would lead to 

lower data sharing costs (Obermeyer and Perloff 1994). However, there is no evidence 

that this occurred. In fairness, the quality and quantity of the data brought to bear on a 

problem has improved dramatically, but the most important factor—the relevance of 

analysis in the decision making process, leaves much to be desired. The reason is simple. 

Analysis is not timely. For example, if it takes years to assemble the data for a large 

environmental impact study, is it not likely that the analysis will be irrelevant before it is 

presented? And once this analysis is put in front of decision makers, how extensive is 
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their ability to provide feedback? Can someone propose, for example, an alternative 

economic strategy based on tourism instead of riverboat gambling and generate a new, 

1,000-page report? Or is stakeholder feedback relegated to meetings and minutes, never 

being explicitly linked to the numbers it discusses? 

This thesis argues that our data gathering practices are broken, and are not likely to 

improve until significant structural changes are made to urban information management 

systems. The traditional areas in which we focus our research—data modeling, analysis, 

and visualization—are developed far beyond the capacity of practitioners to use them. 

The software that does such a good job with those tasks does little to facilitate basic data 

acquisition and processing. We have for too long overlooked the medieval data gathering 

practices common at all levels of government. Corporations have moved into the 21st 

century with integrated information systems that connect businesses with upstream and 

downstream trading partners, so that data is no longer re-processed when it moves from 

one organization to another. The planning community, on the other hand, still operates 

like traders at a bazaar, making deals, bartering, mixing and matching the data sources 

that form the foundation of our analytic systems. 

Improving the flow of data between and within organizations is the next great 

challenge for planning support systems (PSS). With the sheer quantity of information 

sources available to planners increasing every year, and the dramatic technology 

investments made in the late 1990s, this is an especially important time to re-examine the 

ability of information technology to inform decision making in planning. What we really 

must do is re-evaluate what it means to be in the practice of creating planning support 

systems. It does not mean to combine theory, data and a methodology into a plan of 
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action for a specific place and time. It means to create systems that provide stakeholders 

with the ability to continuously make plans (Hopkins 1999), have them pre-empted by 

others’ actions, and re-plan based on the new conditions. A system that did this would 

truly aid the decision making process and completely change the debate around how 

information and specialists are used in the planning process.  

Motivation and Background 

Over the last ten years, few technologies have captured the interest and energy of 

information technology professionals like XML1 and Web services. Recently the fruits of 

this investment have been seen in public-facing applications like new interfaces to the 

databases of Google and Amazon. But perhaps more important are the XML and Web 

service-driven applications buried in the corporate back-office IT infrastructure, 

seamlessly connecting them with their business partners, and allowing them to achieve 

operational efficiencies that were barely imaginable in the 1980s. This is how Amazon 

can sell you a used book from a small, independent bookstore in Allentown, PA for two 

dollars and still make a profit. This is how Wal-Mart can continuously adjust their prices 

and inventories to meet changing supply and demand and respond to the vagaries of 

consumer preference. What can planners learn from Amazon? That question is central to 

this thesis. 

                                                

1 All acronyms are defined in Appendix B. 
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Leveraging important  t e chnology  t rends 

The research agenda of this paper is inextricably linked to a number of fundamental 

changes happening in how government collects, stores and distributes data, and how 

Internet-aware software is built. While planning cannot adopt corporate technology 

wholesale, we do not have the financial resources to develop our own basic technologies 

from scratch, like the military industry. This puts us in the precarious position of 

strategically choosing which technologies to adopt from other fields, and which ones we 

should develop ourselves. I list here some of the trends I believe PSS must follow and 

adopt to be successful in the next few decades. 

An urban information explosion. There is more to solving planning issues than 

simply obtaining the right data, but it is certainly fair to say that information plays a key 

role in an effective planning support system. What exactly is this role? How do we 

conceptualize our information processing requirements? These issues are more 

important than ever as we enter an era where almost every device will have the capacity 

to contribute to the city’s information undercurrent. The new standard for Internet 

addressing, IPv6, was created to greatly increase the number of IP addresses available in 

response to industry’s desire to give unique Internet IDs to devices other than full-

fledged computers. This standard is already in place and in use. Wireless Internet access 

is becoming increasingly common and is beginning to play a role in public sector 

computing (Muniwireless 2004). Hardware for wireless Internet access is less than $10 as 

of June, 2004. These three trends taken together make it probable that even low-cost 

devices such as phones, cameras, buses, watches, traffic sensors, air quality monitors, etc. 
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will be Internet-aware and addressable in the near future, leading to an exponential 

increase the quantity of information available about the urban landscape. 

Geographic data sharing and systems interoperability. Efforts to standardize 

the way in which we describe geographic features are critical to our ability to share 

government data between different departments, levels of government, and commercial 

and educational institutions. For example, if all municipalities called parcels by the same 

name and used the same terminology—and meaning—for a parcel’s attributes, the cost 

of regional planning and administrative operations would be greatly reduced. In Europe, 

the problem has been less acute as most data collection occurs at the federal level. 

Therefore, work in this area is mainly happening in North America, where there is a 

strong tradition of local independence from federal control. The U.S Federal Geographic 

Data Committee and ESRI have strong programs in place to promote a common 

description of the most basic data sets used in government. 

Of equal importance is the ability to locate and ingest another party’s data with little 

or no human intervention in the conversion process. This is systems interoperability. The 

OpenGIS Consortium’s standards for geographic data encoding (GML/Geography 

Markup Language), geographic data publishing (WFS/Web Feature Service), and map 

publishing (WMS/Web Mapping Service) are being well received in the industry and 

provide one of the foundations upon which this work depends.  

XML. Arguably the most disruptive technology since the advent of the World Wide 

Web is Extensible Markup Language, or XML. XML is really nothing by itself. It is 

simply a framework in which to write highly structured languages for describing things 

and passing messages between computers. It is also very important that XML languages 
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are plain text, so that their content is transparent to humans, even in the absence of 

computer programs that can read and manipulate the XML. This has a profound effect 

on people’s trust in the content and in the ability of the content to be used in almost all 

current and future computing environments.  

Web services. “Web services” is an umbrella term to describe systems that allow 

applications to communicate between computers using XML as a messaging language. 

The different communication implementation strategies go by many names (the most 

well known being SOAP, or Simple Object Access Protocol). However, the 

implementation strategies are not important in this context. What is most important is 

that all Web services strategies use a well-known and widely implemented Internet 

protocol for communication—HTTP—the foundation upon which all Web sites 

operate. While some technologists decry the drawbacks of the Web protocol, the 

advantages are numerous. The most obvious is that most organizations already have a 

Web infrastructure in place, so implementing Web services can be handled in a familiar 

way, and the wealth of Web software can be used to develop and run new Web service-

based applications. The other important aspect of Web services is that they use XML for 

passing messages between computers, preserving the transparency that has made XML 

so popular and useful (although some implementations, most notably those promoted by 

Microsoft in their .NET framework, often still hide the actual message content (data) in 

a non-human readable format). 

Whether or not XML is better than other technologies, the software industry has 

quickly supported it, building powerful, reliable tools to read XML and develop Web 

Services on every operating system and application in common use. Perhaps the 
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strongest sign of XML’s importance is that Microsoft, which does not have a strong 

reputation for encouraging interoperability with others’ applications, has decided to base 

their enterprise development software on Web Services, and has changed the native file 

formats of Office documents to XML. 

Refle c t ing on the  sc i ence o f  GIS 

How do we explain geographical phenomena through the application of appropriate methods of 

analysis, and models of physical and human processes? Under what circumstances is the scientist willing 

to trust data that he or she did not collect, and will the increased technological ability to share scientific 

data over the Internet…change them? Such questions about tools often have their roots in theoretical 

questions about appropriate representations, operations, and concepts. 

—Goodchild, et al., IJGIS 1999 

These fundamental questions are posed in a 1999 article co-authored by many of the 

elder states-people of the field, including Mike Goodchild, Max Egenhofer and Karen 

Kemp. One might suppose that thirty years into the evolution of GIS these issues would 

have been discussed in great depth. Yet the article introduces an initiative funded by the 

National Science Foundation, Project Varenius, which seeks to build the theoretical 

foundation of geographic information sciences that was neglected during decades of 

practice-oriented work.  

This project, while concretely grounded in a prototype implementation, fits well into 

the research agenda expressed by Project Varenius. It provides a set of circumstances 

under which scientists (and engineers and planners) can share data and collaborate on 

analysis. We do not hope to provide the definitive solution—that will take years of work 
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by our community of researchers. The main goal is to encourage the field to step back 

and address fundamental, broad-based data management problems that must not be left 

to the fields of management information and computer sciences. 

An Organizational Theory of  Planning Support Systems 

The field of planning support systems is defined as, “a conception of integrated 

systems of information and software which bring the three components of traditional 

decision support systems—information, models, and visualization—into the public 

realm” (Klosterman 1999). While Klosterman’s three components have been well 

researched over the last two decades, work on integration has not received proper 

attention, especially in regard to the organizational setting through which information 

flows. This section discusses the dominant information management paradigms planners 

currently use, and the primary ways researchers have attempted to address shortcomings 

in the effectiveness of collaborative information systems. We see a mismatch between 

the problems we would like to solve, and the strategies employed to solve them, and we 

posit that this is why truly effective solutions have proven elusive. To address these 

systemic problems, it may be necessary to develop a technology strategy based upon a 

different theory of information sharing across organizations. This section develops such 

a theory, which informs the technology framework that is the topic of this work. 

Dominant in format ion management  paradigms 

The most basic information management paradigm is the s ingle  user  system, where 

everyone manages their own copy of information for their own purposes. This strategy 

quickly falls apart in organizational settings, where productivity gains can be had by 
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centralizing data collection and management activities. This leads to a situation where 

data are in one place, and users are in many other places. This problem has been 

addressed using c l i en t -s erver  information architectures. The central principle here is that 

data resides on a server, and multiple, heterogeneous clients all access a particular data 

set from that server. Over the past few decades this strategy has worked well. It fits (and 

perhaps has even influenced) the structure of many organizations, who try to centralize 

specialized activities like information technology in one department. Data producers are 

able to write, or publish, data into the centralized database server (data entry or 

publishing clients), and data users are able to read data out of the centralized system. 

There is no direct connection between data producers and users in this type of setup. 

The client-server strategy is usually only employed within a single organization, 

because allowing users direct access to one’s database is a potential security problem, and 

the system often requires some training and knowledge on the part of the user. In the 

1990s, Web-based c l i en t s  came into vogue. Data was more secure—database 

connection information was hidden from the user and buried in the Web server, and the 

database accessed through the Web was usually a duplicate, expendable version. Data 

usage and interpretation was also made simpler by using the increasingly familiar 

metaphor of the Web page for information presentation and manipulation. The security 

advantages of Web-based systems are clear, but the benefits of Web-based client 

software is less so. In the 1990s, when these technologies were being developed, users 

often had little experience with computing, so the Web strategy made sense. But in the 

near future, if not today, information users will have a sophisticated understanding of 

software user interfaces, and feel limited by the simplicity of Web-based clients. So while 
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Web-based clients have taught us a lot about addressing security concerns, Web pages 

may be reaching the limits of their usefulness as client software. Also, the Web has little 

to tell us about collaboration. The client-server paradigm has not changed, so there is no 

reason to expect the traditional Web server-Web page architecture to lead to 

revolutionary advances in information management and collaboration. 

Geographi c  in format ion sharing res earch 

There already exists a strong body of literature in the area of geographic information 

sharing. The traditional line of inquiry researchers often take is to examine existing 

organizations and their efforts at collaboration (Evans, 1997) in an attempt to 

understand why goals are not better met. The most general problem is that 

organizational settings are highly complex. When embarking on an information sharing 

project, many issues may arise, such as reluctance to share GIS files due to a fear of 

losing autonomy, control over information sources, independence, organizational power, 

cost, complex inter-organizational interdependencies, and politics (Nedovic-Budic and 

Pinto, 1999-2, 54). Solutions to these problems usually address the social, political and 

organizational problems using an existing technology, or at best a new technology within 

an existing paradigm. On the other hand, research in planning support systems is usually 

geared towards technology that advances the state of the art in one of Klosterman’s 

three pillars, with no formal attention devoted to how the technology addresses 

organizational issues. By considering technology fixed, information sharing researchers 

are led to false conclusions. For example, it has been found that the information sharing 

success is found when the parties have aligned interests and work well together. What 

about those organizations who do not have well-aligned goals; do we expect them to 
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never collaborate successfully? Is this an acceptable situation in planning? If we can only 

expect to build successful information sharing systems in that type of environment, we 

can never expect to change the balance of the 80-20 data management-analysis split.  

Posi ti oning PSS in the Theory o f  the  Firm 

We believe that technology research can do more to aid information sharing than the 

current dominant information management paradigms allow. Above all other problems,  

the geographic information sharing research community identifies cost as the main 

barrier to successful projects. While some people express a desire to collaborate 

motivated by altruism and efficient government, the cost in time, resources, and money 

to one’s own organization, in conjunction with the value derived, most often determines 

participation and long-term success (Nedovic-Budic and Pinto 1999-1). So then if 

economic concerns drive behavior, then traditional economic theory should have much 

to offer the urban planning field. From this perspective, we can restate the information 

sharing problem as one in which the costs of the system must be less than the benefits. 

We know that the costs of data management and sharing are high enough so that the 

literature advises us that the benefits must be very high to achieve successful outcomes. 

The goal of technology work in this area is therefore distilled to a simple principle. The 

lower the cost of participation in a system, the less an organization must benefit from 

participation. And as benefits increase, so can cost. A large state organization whose 

mandate is information delivery can spend a great deal of money to accomplish this goal. 

However, a small non-profit whose primary mission is economic development and 

housing has limited time, resources and interest to devote to the issue. Yet both these 

groups, and many in between, must be accommodated within the same framework if the 
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technology of information sharing is to address the entire community that planners must 

serve. 

Many in our field are uncomfortable with comparing government to corporate 

operations because of their different goals and motivations. However, they are more 

similar than different, as private sector firms have information management demands 

(and standards) at least as high as state and local government. We can learn a great deal 

from the business literature if we simply agree that both private and public agencies are 

groups of people organized to accomplish certain tasks in a cost-effective manner. Such 

is the case whether the tasks performed are part of a beer advertising campaign or a 

journey-to-work study. This viewpoint is not novel. Our term of art, planning support 

systems (PSS), is a direct descendant of the corporate term, decision support systems 

(DSS), that came into vogue in the 1980s (Klosterman 1999), and most researchers have 

believed for a long time that GIS should ultimately be part of MIS (Obermeyer and 

Pinto 1994). So we have always looked to our larger corporate brethren for guidance on 

how to use information to our advantage. In upcoming chapters we update that strategy 

and seek to assimilate PSS into the mainstream of distributed information technology, 

but here we provide the theoretical foundation needed to choose the right technology. 

The theory presented here is built up by first specifying a strict definition of the 

types of roles information plays in planning support systems. Then, we propose a way to 

approach the problems conceptually. The only assumption made is that organizational 

behavior is the lens through which these problems should be viewed. Other issues, such 

as technology, are secondary to this. By developing an understanding of the nature of 

planning-related information and the organizational behaviors we must encourage to 



Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 19 

improve our systems, a framework for PSS information management can then be 

developed. 

PSS from an information processing perspective 

Most planning support systems are reticent to admit that their purpose is to quantify  

planning problems. Instead their proponents hedge, stating that they are no more than a 

platform for public debate. If the creators of these systems really felt that way, would 

they put so much thought into their methodology, and effort into data processing? Or is 

it rather the case that most analyses have such a short shelf life that their cost must be 

justified in some other way than their ability to provide answers? I would argue that it is 

the latter, and whether it is called an answer, or a model, or a simplification of a complex 

system, anyone working in the field of PSS must operate under the assumption that they 

are creating systems that process data into more easily comprehensible information to 

help people interpret a complex reality that is beyond the ability of any single individual, 

corporation or special interest group to understand.  

Planning support systems do provide answers through a process that quantifies most 

inputs, but they are always going to be at an intermediate level. They are no substitute 

for decisions. Therefore the PSS primarily exists to process information in ways that make 

it easier for people to make decisions—to understand issues and engage in highly 

informed debate, ideally in a collaborative environment. This is not to say that the 

analysis and presentation of information is not important, just that those functions are 

well studied, and advanced far beyond our ability to populate them with useful data (in 

fact, if this work is successful, someone might be writing ten years from now that PSS 

should be seen as an information presentation tool, because they will take for granted the 
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richness of information available for presentation). But no analysis or presentation or 

public participation can happen without a rich warehouse of information upon which to 

work. 

The complexity of modern cities contributed to the need for the profession of 

planning, so it should be apparent that the information systems planners use should help 

cope with this complexity. Although we are in an, “information rich era in which high 

volumes of data flow through ubiquitous communication networks (Evans and Ferreira 

1995), current practices are not able to make use of it, at least not in a cost-effective 

manner. In fact, organizations usually resist distributed processing efforts (Meredith 

1995), leading to high project costs with little return. This problem will likely become 

even more noticeable as we try to take advantage of all the environmental sensing 

equipment embedded in the urban landscape, from security cameras to camera phones 

and location-tracked transit vehicles, the data sources we can and should incorporate 

into PSS will increase exponentially in the near future. 

It is difficult to argue against the current systems, because the lack of any universal 

practice or system is more notable than anything else. How do planners manage data? 

Basically they acquire it, process it in some idiosyncratic way to get it into their database. 

While there are some standard software packages in use, and plenty of “best practices” 

available to cite, there are precious few ubiquitous practices. When practices become 

ubiquitous and generic enough that unrelated organizations can develop connections 

between their information systems, we have achieved interoperability. And that is the point 

of this work, to define the general, interoperable, practices that software packages must 

implement if we are to have any hope of making better use of the information available 
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today, and the immense increase in quantity and disparity of information that will be 

available tomorrow. 

The primary raw material needed to create an analysis product is information. This 

information could be obtained by developing in-house data gathering capabilities, but the 

cost of that effort is beyond most organizations. Imagine sending teams of city planners 

(even if they were graduate students) out into the field to count traffic, go door to door 

asking people how much money they make, or how much they paid for their house. Why 

do this when organizations like the assessing department, the US Census Bureau, the 

Bureau of Labor Statistics, the realtor’s Multiple Listing Service, and the actuarial 

databases of all kinds of insurance companies already have the information? It makes 

much more sense to form partnerships with these groups, and only develop custom data 

sets when absolutely necessary. For this reason, the production of planning analysis depends 

upon inputs from multiple, disparate suppliers. 

So ultimately, to make use of a large body of data, it will be necessary to work with 

multiple, disparate suppliers. But it may be easier to start by looking only at the case of a 

municipal planning effort using solely municipal data sources. What is the private sector 

analog to a town? Is a town a firm or a conglomerate? This is where things get slightly 

complicated. Most of a town planner’s information providers are other municipal 

agencies, such as property assessing, building permitting or zoning, so it is tempting to 

look at municipal government as one firm with different departments that support the 

development of different products, like tax bills, parking tickets, police officers, drinking 

water, etc. However, in practice a government bureaucracy operates more like a 

multidivisional firm than a company in the normal sense.  
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Multidivisional, or M-form, firms have many unique characteristics, but for our 

purposes the critical one is that the reward and decision making systems are constrained 

within a division, so that there is little incentive for one division to act in the best 

interests of another (Carlton and Perloff 1990). Some opportunities are lost this way, but 

at least the organization does not collapse under its own weight (Ba and Stallaert 2002). 

At the state and federal level, this probably makes a lot of sense because the information 

and coordination required to operate such large organizations is overwhelming, but 

municipalities may be emulating their larger relatives, without much thought paid to the 

reason. This theory suggests that one solution to this problem (and perhaps to many 

other problems) could be to institute more hierarchical forms of local and county 

government so that all divisions operate under a unified risk and reward structure. 

However, the task at hand is to redesign information systems, not government. So we 

will work within the given institutional parameters, which suggest that it is best to 

consider a local government as a multidivisional firm, and that it will stay that way in the 

future.  

So town planners cannot count on other departments to act as partners in the 

creation of their product. In other words, the assessing department has little to gain from 

reducing costs in the planning department. We are left with a situation where, from an 

ownership perspective (either as a stockholder or taxpayer),  we would like to see our 

government maximize production across all divisions (e.g. assess property values and 

undertake planning analysis). However, the organizational structure cannot change, and 

by the definition of a multidivisional firm, the highest levels of the firm are not provided 

with enough information to tell the divisions exactly what to do. This is a vexing problem, 
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and I believe it provides a good model of reality. In fact, this may be why we have so 

much trouble developing effective planning support systems—because we believe the 

government to operate like a single, unified firm.  

When faced with the question of how to incorporate property value information into 

a planning support system, the PSS community has generally addressed the technical 

issues and assumed away the organizational ones. This would be fine if the 

organizational issues could be treated in isolation, but they are intertwined with 

technology. For example, since the 1990s, the trend in GIS has been to put data into an 

“enterprise” warehouse. “Enterprise” means that the data maintained by an organization 

(enterprise) resides in a centrally maintained database, with clients connecting over a 

network, and accessing those data sets a database administrator has granted them 

permission to use. This is fine as an intra-divisional solution, but the M-form theory 

suggests that enterprise databases find it difficult to cross divisions, and therefore 

enterprise solutions do little to address information management issues that cross 

divisional boundaries (Carlton and Perloff 1990). The theory is borne out by recent 

empirical data such as the following example. In a recent survey of 110 companies with 

revenue of at least $500 million, only 23% had their entire firm using one instance of 

ERP (enterprise resource planning) software.2 And in one extreme example, as many as 

400 different versions of a single vendor’s ERP software were in use at a single, large 

company (Kock 2004). 

                                                

2 ERP is a term used to describe the process of managing an organization. The software usually keeps track of 
company-wide information regarding employees, facilities, etc. Unlike software used to achieve business objectives 
(like customer relationship management software), which might naturally be specialized for certain divisions or 
functions, one would expect enterprise resource planning operations to be easily centralized.  
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Examining local government from the perspective of an M-form, or multidivisional 

firm, provides some insight into past information management failings, but remember 

that a discussion of a municipality’s relationship to other organizations was postponed. It 

is now quite easy to return to that issue, because our theory already considers different 

divisions as basically acting like different firms. Conceptualizing government as a 

multidivisional firm makes it easy to incorporate other levels of government, non-

governmental entities, and even private firms. And later it will be shown that the theory 

suits not only the case when the analyst is a government entity, but the more realistic 

case when the analyst is a private entity working in loose collaboration with government, 

their own firm, and the public. There is no change required at the broadest theoretical 

level, although in practice minor differences will emerge—most likely around tighter data 

privacy requirements and perhaps higher costs and information licensing restrictions. 

While the differences between separate firms and different divisions within the same 

firm might be important in some ways, for the purposes of looking at how they share 

and process information, it is most useful to consider their relationship to be that of 

trading partners.  

The way trading partners exchange information is by executing a contract. This is a 

tremendously important point. A contract is a specification of all the rules governing a 

business transaction between parties. A contract is needed when the parties doing 

business cannot count on each other to maximize performance without one (this is 

basically any time when the two parties have different bosses). The contract must 

anticipate and specify what happens in all possible scenarios, because if you could count 
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on the parties to behave properly in a situation not covered by the contract, the contract 

would not have been needed in the first place. While subcontracting and outsourcing 

continue to be cost-effective ways of doing business, this description of contracts begins 

to suggest how they can become quite expensive.  

The cost of doing business with outside parties is addressed in a number of 

organizational behavior theories, most notably “Agency Theory” and “Transaction Cost 

Theory” (Vibert 2004). These theories help us decide when to outsource and when to 

keep a function in-house. Transaction costs have been identified as a key factor in 

geographic information sharing (Nedovic-Budic 1999), and being able to accurately 

predict these costs, and develop contractual agreements that govern the process, help 

ensure project success. Overall, cross-organization information sharing can achieve 

economies of scale, so planners should continue to outsource their data development 

needs, but these theories tell us that we still must put contracts in place. Even when 

cross-agency cooperation seems strong, tools like Memorandums of Understanding 

(MOUs) should be employed to ensure good results. What should these MOUs contain? 

This is where PSS research can inform policy. No treatment of planning support systems is 

complete without attention paid to the rules by which information is transacted across agencies. Either 

this policy work must be done for every PSS proposed, or the PSS must leverage a 

broader technology framework that has already accounted for these issues. This subtle 

interplay between technology and policy is a large part of the motivation for this work. 

Framing the  Issues  from a Firm’s  Perspec t i ve  

With a basic theory in place about PSS and its place in local government, we can 

begin to address the problems raised in the introduction. Planning analysis still has 
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relatively little influence on development when compared to highly deterministic tools 

like zoning and the transportation manual, which seem to single-handedly (along with 

developers’ interpretation/manipulation of them) shape urban form. But we cannot seek 

to emulate zoning or engineering manuals. They are different kinds of tools. They are 

one generation downstream, offering patterns or heuristics to follow. We must operate 

upstream, providing the guidance by which these heuristics are created, or by which they 

are accepted or rejected at the time of decision making.  

Data, data, data 

In real estate, the three most important characteristics of a property are location, 

location and location. Planning analysts have a similar love affair, but with data. Urban 

environments have become such incredibly complex organisms that no single person or 

agency has enough knowledge to make responsible decisions. Instead we rely on a web 

of specialized disciplines to build and maintain the databases and analytic tools we bring 

to bear on planning problems. The cost of gathering and processing this data is arguably 

the most significant cost for planning analysis. In rare cases, one might undertake one’s 

own data collection effort, such as a survey. But this only happens in research 

environments. The general case is one where practicing planners build their analysis 

around data that is readily available, and unless society develops the willingness to fund 

planning research (like we do in defense), this will continue to be the case. The point 

here is that planners are not data producers. We operate like traders at a bazaar, making 

deals, bartering, mixing and matching the data sources that build our analytic systems. I 

hope I have evoked a mental image of planners shuttling between medieval tents on 

muddy roads, because that is the state of civic information systems.  
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Information technology has certainly brought significant improvements to the speed 

and cost of creating and maintaining data, but we are still far from being good at 

bringing information to bear on a problem at the precise time when decisions are being 

made. In most urban information systems data comes from a variety of public and 

private sources, and can quickly became outdated. In the case of government agencies, 

whether at the federal, state, or local level, data is usually easy to acquire at any particular 

point in time, but difficult to keep current at all times. We often try to supplement 

government data with more current data from the private sector. For example, in urban 

growth studies, the most up to date source for new construction and land use is the 

developers building them. But there are no generally accepted best practices for 

integrating public and private data sources in a PSS, and without policy in place, we 

cannot expect anything more than ad hoc participation from the private sector. 

Agency theory suggests that the data provision issues can be improved by having the 

concerned parties execute a contract specifying exactly the rules of engagement. This 

may sound simple, but this type of contract is rare. Most data sharing agreements do a 

good job of detailing what will be shared, but not how. This is probably because it is 

seen as going beyond the boundaries of politeness to tell another agency how to do their 

job. Yet who will tell them how to do it? In a multidivisional firm, we have learned that 

the “bosses” are prevented from having enough information to do this, so the 

appropriate rules must come out of a negotiation process between the interested parties; 

in other words, a contract. 

So what should the contract say? One could image, for example, a program that 

could compare an old data set to a new one and make suitable updates. In this case, the 
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contract might say that a new data set will be provided whenever a change is made. If the 

data are large, however, this could be a very wasteful way of doing things. It would make 

more sense to write a piece of software that could receive messages telling it to update a 

particular data set in a particular way. In this case, the contract could specify that the data 

provider’s software send messages to this new, smart piece of software. This puts a 

burden on the data provider, but the user could compensate them with the money saved 

from not having to do data updates any more. And the provider would be much more 

likely to agree if they could re-use the updating system (and the contract) with other 

users. Now the interplay between technology and policy should be becoming clear. In 

order for data users to solve their information management problems, they need to 

develop detailed, clear relationships with data providers. This clarity must be evident in 

contractual terms, public policy, and technological execution. 

The timing of decision making 

Planning support systems, like decision support systems, are tools. Their intent is not 

to produce maps and figures for annual reports, but to be ready partners in the process 

of decision making. Fulfilling this role requires that PSS must be operated by stakeholders at 

the time when decisions are being made. Current practice is for technicians to operate the 

system, and the usefulness of its results is usually tied closely to the time at which the 

data were acquired, or the analyses were run. In the Buildout analysis, we will see that 

MassGIS valiantly attempts to address this issue by providing online access to the 

analysis. This shows that they recognize the problem, but without up-to-date data, the 

fact that the analysis is available to a larger population does little to inform public debate. 
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At this point in the discussion, many studies of planning information systems tend to 

dive into the contentious arena of public participation and get diverted by issues of 

politics, power and class. “Rational,” information-based decision making processes 

might be mentioned as a marginalized form of discourse, or even as a tool of the wealthy 

to erect a façade of objectivity around questionable decisions. This paper takes a slightly 

different position, and suggests that people’s main motivation to use rational scientific 

analysis is honest; they genuinely believe in its power to inform good decisions. It is 

more productive to take the position that our community of information scientists 

provides the public realm with poor decision making tools. Our analytic methodologies are 

usually sound, but we have done little to adapt them to realistic decision making 

scenarios. Maybe the academic, prototyping environment in which our technologies are 

developed are to blame, or maybe there is some other cause, but systems that depend 

upon pre-prepared, static data sets have extremely limited value. And there seems to be a 

tacit understanding of this, leading to a general dissatisfaction with most urban 

information systems. Doing nothing but improving the timing of analysis would 

revolutionize the field, but achieving that goal requires the other changes discussed here 

as well. 

The timing of expenditures 

A finance expert will tell you that the predictability and non-volatility of an expense 

is just as important as its actual amount. “Lumpy” expenses are bad, because it is 

difficult to budget for them. The preference for stable receipts and payments can be seen 

in many facets of the economy. This is why companies are willing to pay more to lease 

equipment, and people can be driven bankrupt by an ill-timed job loss. Planners also can 
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ill afford lumpy expenses. We may go to our city council or governor and ask for a fourfold 

budget increase, just for the next couple of years to develop a twenty year master plan, 

but if conditions change, and in five years that plan is no longer valid, the money will not 

be there to re-do the work. A world that changes in complex ways at unpredictable times 

requires continuous planning and analysis. Yet the nature of public expenditures 

demands constancy and predictability. So the cost of performing planning analysis must 

reconcile these conflicting forces. The Buildout analysis suffers greatly from this 

problem. A great deal of good work is obsolete soon after it is complete. While policy 

may take the lead on this issue, any technology work in the field should also be aware of 

the importance of timing. 

 

Research Question & Methods 

How can planning take advantage of these cutting-edge technologies that are 

changing the corporate IT landscape? This question motivates the research presented 

here. Surely there are benefits to be had from the Web services paradigm of information 

flow, but do the benefits outweigh the costs of adoption? And as mentioned earlier, we 

must be smart about how much we adopt, and how we adapt technology to fit the needs 

of government and urban planning.  

Proving that the future of urban information systems lies within an XML/Web 

Services information paradigm is a difficult task at best—there are few tools or 

precedents for proving the value of paradigm shift. Falling short of this, the best strategy 

is to position the field within a theoretical framework that helps explain why some issues 
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are successfully handled, and others remain intractable problems. Starting from the 

theoretical position put forth above, we make a strong case for Web services through 

hypothetical syllogism (Weston 1992, 51). We do this by showing that government 

organizational behavior is similar to corporate structures, and therefore that the solutions 

corporations employed to successfully address information management and 

collaboration issues can be employed in planning, which includes both governmental and 

private sector organizations.  

Thesis Organization 

This chapter introduced a vexing problem. We seem to be constantly progressing in 

our ability to capture, store and disseminate data, but our ability to manage and make 

efficient use of this information leaves much to be desired. The PSS literature focuses 

too heavily on the traditional specialties of data management, modeling and visualization, 

paying too little attention to their integration, or issues regarding implementation within 

an organization. On the other hand, the information sharing literature often takes 

technology as a given, and seeks to address information sharing and collaborative 

planning issues from an organizational behavior perspective. We propose a blended 

approach. The major points made here about how organizations collaborate are that 

transaction costs and the chain of command are important factors in the ability of 

organizations to function effectively. Executive managers must have very good 

information about the costs and benefits of different actions and outcomes if they hope 

to run their agency effectively. If an organization is too large (or inefficient) for 

executives to get the information needed to make these decisions, they must cede 
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decision making authority to lower levels. This makes small divisions effective, but 

magnifies cross-divisional problems—exactly the situation we observe in government 

today.  

In Chapter 2, modern, Internet-centric, distributed information technologies are 

reviewed with a focus on how they address information management problems. Chapter 

3 presents the Massachusetts buildout analysis, an urban growth model developed as part 

of the Community Preservation Initiative (CPI), an effort to better engage towns in 

planning for growth management and open space preservation. The CPI is interesting in 

itself, and is discussed in more detail elsewhere (Hodges 2004), but here we look only at 

the buildout analysis in its role as a practical tool with great potential, but limited 

usefulness, because it suffers from the problems predicted by the theories put forth in 

Chapters 1 and 2.  

With this background, we are able to design a new framework for urban information 

management. Chapters 4 and 5 present solutions to common PSS requirements such as 

data sharing, participatory decision making, and expert collaboration. These solutions are 

expressed within a Web services framework, which uses a shared, formal, XML-based 

vocabulary called PAMML (Planning Analysis and Modeling Markup Language). The 

PAMML framework consists of a language in which abstract data sharing, transformations 

(arithmetic operations, format translations) and public feedback loops can be expressed, and 

a suite of Web services that allow organizations to advertise their ability to perform 

specific tasks, such as the transfer of a particular data set, or the execution of a particular 

spatial operation. The entire PAMML vocabulary is expressed in the XML Schema 

language, and is listed in Appendix A. 
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The theoretical argument is strengthened by reference to an example of a real 

planning support system being used in Massachusetts. Armed with a theory and an actual 

system that exhibits shortcomings common to its kind, the thesis presents a solution 

based on XML and Web Services. As stated, there is no definitive way to unequivocally 

prove the system’s value, but it is hoped that the preponderance of evidence presented 

here should convince the reader that paradigm shift is worthwhile. 
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Chapter 2:  Technology Frameworks for Information Sharing 

Information-rich analysis efforts are characterized by their struggles with data 

preparation. This process can take months or years to complete (Waddell 2004), creating 

a situation where the “dirty little secret” of information analysis is that the majority of 

the time and effort is spent in data acquisition and formatting. The planning profession 

has generally ignored this problem, considering it a software issue which will improve 

with time and progress in the general field of information systems. This point of view 

seems reasonable, but much evidence suggests otherwise. If that is the case, it would 

seem that we would have observed significant improvements over the last few decades, 

but the results are mixed. We are digitizing less data, and using more data in our analyses, 

yet we continue to duplicate data development efforts, and we rarely implement systems 

whose data stays relevant from year to year. The problem is exacerbated by the fact that 

the organizations information moves between have different professional cultures, goals, 

and skills. Administrative divisions like property assessing have little in common 

culturally with the planning department, or a zoning board, or a local watershed 

protection group. These communities require their own methodologies for information 

processing, visualization and dissemination, and any proposal for improving information 

integration must not put restrictions on any organization’s natural operational processes. 

A well-known concept in decision support is the idea that our systems should help 

people engage in the transformation of data into information into knowledge. Our 

current technologies have been good at providing decision support to individuals or 
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small groups using self-contained systems, but when the system is like most planning 

analyses, having multiple, heterogeneous participants in every area—from the creation of 

data, to the modeling, to the presentation of results—they break down under the 

operational costs of the information transactions. 

This situation suggests that the root causes of our data dilemma are not in what 

information systems or data converters we happen to use, but in defining an overall 

framework for processing information. A framework is an extensible structure for 

describing a set of concepts, methods, technologies, and cultural changes necessary for a 

complete product design and manufacturing process (CERN 2004). It is more than a set 

of software recommendations, or even a new technology proposal, but all those things in 

conjunction with the cultural and institutional changes necessary to effect real progress. 

This chapter presents a technology framework in which we can reduce costs, while 

developing urban information systems that hold up to increasing demands from 

participants in data input (data), information development (modeling), and knowledge 

creation (visualization and public participation). First, the concept of a planning support 

system is positioned generically as a distributed computing environment. This allows 

planners to leverage the systems that computer scientists have created for distributed 

information processing instead of inventing our own technology baseline. While there 

are a few alternative technologies for doing distributed computing, a Web Services 

framework is chosen. This decision helps solve the next issue, which is to develop 

planning-specific decision support systems within the distributed computing 

environment. In a Web Services framework, domain-specific information models are 
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developed in a semantic meta-language like RDF or XML. While these tools have 

various pros and cons, Web Services software available today is designed to use XML, 

and the practicality of using RDF has yet to be shown. In the following chapters, we 

adopt the Web services framework, and use it to prototype a new urban information 

system based on data and analysis services. This is presented through a series of use 

cases relating to data publishing, urban modeling, and participatory GIS where case-

specific solutions are developed. Finally, a full system is presented in Chapter 7, and the 

MassGIS buildout analysis is presented in this new framework. The XML vocabulary is 

called Planning Analysis and Modeling Markup Language, or PAMML, and the Web Services 

built on it are referred to as PAMML services.  

An introduction to distributed computing 

A distributed computing environment is one in which information and the 

applications that make use of it are physically located on different computers. In order 

for these computers to know that others of their kind exist, and how to talk to them, 

computers need a whole host of hardware and software. For the purposes of this work, 

we will assume that communication occurs via what is commonly called the Internet, 

which includes Ethernet and TCP/IP. 
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In this environment, an information warehouse is called a 

resource, and the system that provides information is generally 

called a service. So in this parlance, information, or data, is 

retrieved from a resource through interaction with a service. The 

agent that requests information—for example a person, a 

computer or a computer program—is called a client. What has 

just been described is usually called a “three-tier architecture” in 

computing. This architecture underlies most of the important 

systems in use today, including e-mail, instant messaging, and the 

World Wide Web. 

In this architecture, any information store, such as a parcel 

database or an address book, becomes an abstract concept. The 

actual data can only be accessed by making a request to a service, which serves as the 

gatekeeper to the data. PAMML is a language that describes how to build services, so 

that different services can be expected to reliably interact with one another.  

This architecture is quite complex and difficult to implement in practice, so why 

bother? The best answer is that distributed computing is flexible enough to mirror the 

organizational situations we encounter in the real world. For example, if everyone was 

required to have an email server on his or her computer and they could only read their 

email on that computer, it is doubtful that email would be in widespread use today. In 

government, our interest centers on the distributed nature of information and domain 

knowledge. For example, the assessing department uses parcel data more than any other 

Figure 2-2:  
Abstract 3-Tier Architecture 

 
 
Figure 2-2:  
Web 3-Tier Architecture 
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agency. Therefore, they are best able to make sure that parcel information is up to date 

and captures the knowledge about parcels required for municipal administration. The 

same applies to other domain experts, such as traffic engineers, natural resource 

managers, and infrastructure providers. Unlike most of these other organizations, 

planning practice is defined by the ability to integrate and analyze information from 

other domains. If successful planning outcomes were not so dependent upon having 

access to the right information, such close attention would not have to be paid to the 

information infrastructure of all the professions involved in collection information about 

places. 

The IT world offers various solutions for implementing distributed computing 

applications. EDI, or electronic data interchange, is decades old and has been favored by 

organizations with high security and reliability needs like banks and airlines. While the 

technology is proven, participation in an EDI system requires a great deal of 

programming and system administration skills, which would eliminate the potential 

participation of most local governments and non-profits.  

In the early 1990s a system called CORBA became popular. Using the standard 

protocol IIOP, a CORBA-based program from any vendor, on almost any computer, 

operating system, programming language, and network, can interoperate with a CORBA-

based program from the same or another vendor, on almost any other computer, 

operating system, programming language, and network. CORBA has been widely used to 

connect corporate information systems, and is getting some attention in the GIS field 

(Preston, Clayton and Wells 2003). A full analysis of this is beyond the scope of this 
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paper, but in general, CORBA seems to be too “tightly coupled”, requiring too high a 

level of coordination and cooperation between agencies, despite its language and 

operating system independence (Gottschalk 2000). 

Web Services 

As personal computing and the World Wide Web gained popularity in the 1990s, the 

IT landscape changed. Information sharing and processing was no longer the sole 

purview of big corporations. There was suddenly a vision of all organizations and 

individuals participating in a global information community. The old systems were not 

offering answers to these new challenges, so computer scientists looked at the Web and 

tried to understand why it had been so successful. It was found that the Web architecture 

requires only a minimal set of standards—HTTP as the basic application level protocol, 

and HTML for formatting information—but it delivers the ability to communicate 

without centralized planning or control, and to integrate a heterogeneous mix of 

platforms and programming models (Curbera 2001). The result is a very shallow 

interaction model between a very heterogeneous set of clients and servers that allows 

simple things, like sending a text file to someone’s computer, to be easy; and complicated 

things, like buying a book with a credit card, to be possible. 

The Web still has many limitations. HTML was designed as a way to mark up text 

for display, and HTTP is best at handling communications between only two computers 

at a time. In order to improve upon the quality of information available on the Web, and 

the systems that enable multi-computer, multi-organization transactions, something 
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more was needed. XML, the successor to HTML, and Web Services, a descendant of 

EDI and CORBA built on Web standards, address these needs. 

XML and XML Schema de f ined 

XML stands for eXtensible Markup Language. It is a meta-language—a language 

designed for developing other languages. XML was developed as a way to tag 

information with metadata and enforce structural rules without requiring that the 

information be stored in or adhere to the strict rules of a database. It has proved to be a 

highly successful strategy, as the language is barely five years old and is already 

extensively used to formally describing information that does not fit nicely into the 

relational database paradigm. What XML provides is a consistent structure and a way of 

formally describing a language’s vocabulary. The World Wide Web Consortium defines 

XML’s design goals as follows (World Wide Web Consortium 2004): 

1. XML shall be straightforwardly usable over the Internet. 

2. XML shall support a wide variety of applications. 

3. XML shall be compatible with SGML. 

4. It shall be easy to write programs which process XML documents. 

5. The number of optional features in XML is to be kept to the absolute minimum, 

ideally zero. 

6. XML documents should be human-legible and reasonably clear. 

7. The XML design should be prepared quickly. 
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8. The design of XML shall be formal and concise. 

9. XML documents shall be easy to create. 

10. Terseness in XML markup is of minimal importance. 

 

The benefit to writing a language in XML is that you can take advantage of a vast 

collection of software already developed to process XML, and only write the software 

that deals with the specifics of your particular language. Furthermore, one XML language 

can use others to describe generic entities. For example, XML language developers do 

not have to describe how a person’s address should be written. They can simply use an 

XML address language developed by another information community (such as software 

companies that develop address book software). More importantly, a great deal of 

infrastructure needed to make an application work is common to all applications, such as 

security, authentication, field validation, etc. Using XML makes it possible for a language 

writer to be confident that their language can take advantage of advances in these areas 

without requiring major changes to their own work. 

The way one develops an XML-based language is to write a rulebook. This is done in 

an XML language called XML Schema.  This document functions as a dictionary—

defining the set of terms that can be used—and also as a grammatical reference—

enforcing rules about how words are put together to make sense. Additionally, XML 

Schema has the ability to reference other XML Schemas. This makes it possible to 

leverage existing work in related areas. PAMML can use this mechanism to avoid re-
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inventing the wheel in the areas of networking, identity management, databases, and 

GIS. For example, whenever a PAMML document needs to reference to a resource 

located somewhere on the Internet, the World Wide Web Consortium’s (W3C) XLink 

vocabulary can be used to identify the resource. Database access may take advantage of 

W3C’s evolving XQuery vocabulary. In the geographic information systems field, a 

number of OpenGIS Consortium (OGC) specifications will be used. GML (Geography 

Markup Language) will be a supported data set format, and GML will also be used as the 

“native” geographic object language. WFS (Web Feature Service) will be a supported 

data format, in concert with the Filter encoding specification, which defines queries on 

geographic data. 

Web servi c e s  de f ined 

“Web services” is an umbrella term used to describe systems that allow computer 

software to communicate using XML as a messaging language. The different 

communication implementation strategies go by many names (the most well known 

being SOAP, or Simple Object Access Protocol). However, the implementation 

strategies are not important in this context. What is most important is that all Web 

services strategies use the well-known and widely implemented Internet protocol for 

communication—HTTP—the foundation upon which all Web sites operate. While 

HTTP’s simplicity has many drawbacks, the advantages are numerous. The most 

obvious is that most organizations already have a Web infrastructure in place, so the 

most basic Web Services implementations can be handled in a familiar way, and the 

extensive range of Web software can be used to develop and run new Web Service-based 
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applications. The other important aspect of Web services is that they use XML for 

passing messages between computers, preserving the transparency that has made XML 

so popular and useful. 

The description of a Web service can be modeled in two parts. In the abstract part, 

WSDL describes a Web service in terms of messages it sends and receives through a type 

system, typically W3C XML Schema. Message exchange patterns define the sequence 

and cardinality of messages. An operation associates message exchange patterns with one 

or more messages. An interface groups these operations in a transport and wire 

independent manner. In the concrete part of the description, bindings specify the 

transport and wire format for interfaces. A service endpoint associates network address 

with a binding. Finally, a service groups the endpoints that implement a common 

interface. Figure 2-3 shows the conceptual WSDL component model. 

 

Figure 2-3: WSDL conceptual model 
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Some alternative frameworks 

As mentioned earlier, precursors to Web services were EDI and CORBA. Also in 

this group are other frameworks having their roots in computer programming languages, 

like RMI (remote method invocation) and DCOM (distributed component object 

model), and programming languages in general. The problem with these systems is that 

they are too “tightly coupled,” meaning that the two organizations wanting to exchange 

information with each other need to know a great deal about the other’s systems and use 

similar technologies to build the communication software. When one organization 

changes their database or a piece of code, it is likely that the other organization will have 

to do the same. This type of system will only work out if there are a limited number of 

groups involved and they have a strong motivation to collaborate. 

Systems that seek to integrate organizations on a larger scale need “loosely coupled” 

frameworks. In a loosely coupled system, most aspects of an organization’s information 

system are hidden, or abstracted, from the world. There is no need for particulars such 

as operating system, database software, and even the information model, to be shared 

with others. Organizations exchange information via computer-to-computer messages, 

which are understood by all the partners in the exchange. The earlier description of 

XML and Web services obviously fits this description, but two other frameworks seek to 

do similar things, UML and the Semantic Web. 
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UML 

“The Unified Modeling Language (UML) is a graphical language for visualizing,  

specifying, constructing, and documenting the artifacts of a software-intensive system.  

The UML offers a standard way to write a system’s blueprints, including conceptual  

things such as business processes and system functions as well as concrete things such  

as programming language statements, database schemas, and reusable software  

components” (Object Management Group 2003, page xxv). This notion of a standard 

way to write a system’s blueprints makes UML a candidate for developing a generic 

planning information system, because this helps to fulfill the requirements of a loosely 

coupled system. Its strengths are that its primary output is a visual diagram; it can be 

used to describe a system in a very loose, unspecific manner; but can also be highly 

specific if necessary, retaining the features of a formal method. As stated by Muller, “A 

method defines a reproducible path for obtaining reliable results. All knowledge-based 

activities use methods that vary in sophistication and formality. Cooks talk about 

recipes…architects use blueprints, and musicians follow rules of composition. Similarly, 

a software development method describes how to model and build software systems 

(Muller 2000).” The UML method represents the software industry’s consensus on how 

to graphically describe a software system. 

The UML’s strengths are also its weaknesses. While a graphic notation is great for 

humans, it is not computer readable. Also, generalized UML models are too loose. It is 

difficult to ensure that different applications can interpret the model in the same way and 

therefore interoperate. Software engineers use the UML to explain high-level ideas about 
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system design, not to directly specify system execution. There have been efforts to 

overcome these limitations by specifying an XML vocabulary for UML diagrams, and 

develop standards for highly specific models, but these efforts quickly begin to look like 

Web services, and will probably end up as such. 

Web Ontology  Language  

The Web Ontology Language (OWL) is a relatively new initiative from the World 

Wide Web Consortium. It represents a major step in the maturation process of efforts to 

define formal semantics about Internet-accessible information content. These efforts 

began with a DARPA-funded effort called DAMML+OIL and more recently has moved 

forward under the  Resource Description Framework (RDF) specification 

(http://www.w3.org/TR/rdf-primer/). OWL and RDF are part of a broad effort geared 

towards improving the description of information on the Web, called the Semantic Web. 

The World Wide Web Consortium (W3C) defines the Semantic Web as, “the 

representation of data on the World Wide Web…It is based on the Resource 

Description Framework (RDF), which integrates a variety of applications using XML for 

syntax and URIs for naming” (http://www.w3.org/2001/sw/). Here is the W3C’s 

definition of OWL: 

“OWL can be used to explicitly represent the meaning of terms in vocabularies and 

the relationships between those terms. This representation of terms and their 

interrelationships is called an ontology. OWL has more facilities for expressing meaning 

and semantics than XML, RDF, and RDF-S, and thus OWL goes beyond these 
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languages in its ability to represent machine interpretable content on the Web. OWL is a 

revision of the DAML+OIL web ontology language incorporating lessons learned from 

the design and application of DAML+OIL (http://www.w3.org/TR/owl-features/).” 

OWL and RDF have many similarities to XML Schema. In fact, they both use XML 

Schema as their recommended expression language. The major difference between XML 

Schema and the semantic languages seems to be in the amount of flexibility allowed in 

defining relationships. XML Schema is limited in its ability to say that one thing is like 

another without defining them as being of the same data type. It is also difficult to 

construct relationships between resources without prior cooperation between the 

developers of those resources. On the other hand, OWL and RDF have very specific 

language constructs to explicitly define the relationships between objects.  This makes 

the semantic languages very good at creating taxonomies and reconciling the different 

taxonomies that various organizations may create. Where the semantic languages run 

into trouble, however, is when one tries to build a data-centric application. The very 

flexibility that is such a positive feature in some situations becomes a negative when an 

application must count on a certain data field being present in every object it encounters 

(Forsberg and Dannstedt 2000). 

OWL may eventually become an appropriate framework in which to build a 

collaborative planning support system vocabulary, but the technology is too young to 

consider for practical experimentation at this time, and this project did not identify any 

information modeling issues that were beyond the capabilities of XML Schema to 

handle. 
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Chapter 3:  A Study of  Regional Growth Planning:  

the MassGIS CPI buildout analysis 

Using empirical evidence is always helpful in elucidating a theory. In this case, we are 

interested in looking at a common class of planning analysis that is undertaken by 

practitioners (as opposed to academics), is widely used, and is relatively modern. The 

analysis presented here was chosen for the following reasons: 

1. It addresses growth management, one of the most pervasive concerns of urban 

planning.  

2. It covers many different types of places, being intended for use by all 351 cities 

and towns in Massachusetts.  

3. The range of jurisdictions involved is diverse, including state agencies, local 

planners, zoning boards, elected officials, and private sector consultants. 

4. Growth planning has intrinsic spatial qualities, ensuring that work on this 

problem will take into account the special concerns of spatial information. 

This chapter begins with an overview of Massachusetts’ Buildout analysis, a planning 

support system that calculates maximum residential and commercial land use based on a 

town’s current zoning. As this is not a formal case study, many details are left out, such 

as its evolution, its role in the state’s larger growth management efforts, and even its 

successes and failures. Instead, we infer its importance by the fact that it was enacted and 

funded, and all 351 municipalities have been analyzed. After a brief introduction to the 

enabling legislation that funded it, a detailed description of the analysis is presented, 
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focusing on data requirements and analytic methodology. Finally we abstract out the 

major themes of the analysis, the types of organizations involved and the level of 

coordination required of them, and the sustainability of the work, or its ability to be 

repeated as its assumptions change. The intent of this chapter is to take a concrete, 

practical analysis and use its strengths and weaknesses to highlight the issues that must 

be addressed by any framework for urban information management, and ultimately to 

drive the design of new software. 

Policy Background 

Where do you want to be at buildout?1 That is the fundamental question posed by 

Massachusetts’ Community Preservation Act (CPA). Initiated by the Executive Office of 

Environmental Affairs (EOEA) and enacted in December 2000, this effort seeks to, 

“promote smarter land use to preserve and enhance the quality of life in communities 

across the Commonwealth.” (Buildout Book, 2001). Put in a broader context, this is a 

statewide planning initiative geared towards curtailing unchecked land development 

falling squarely in the policy arena of “smart growth.” The Act contains a number of 

policy instruments designed to help municipalities make their own, better informed 

planning decisions. Small grants are given to develop Community Development Plans, 

and “Fiscal Impact” and “Alternative Futures” tools have been built and are available for 

local use. The focus here is on a tool developed by MassGIS and regional planning 

                                                

1 Buildout is defined as the maximum development allowed by right according to a 
municipality’s regulations—most notably zoning, but also including environmental 
protection, site suitability, etc. 
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agencies, the Buildout analysis, which maps out the consequences of full development 

under current zoning regulations. 

The general objective of the buildout analysis is to predict the maximum number of 

new homes, residents and businesses allowable under current zoning regulations. The 

hope is that having this information will encourage towns to revise their zoning to better 

reflect the amount and type of development they desire. The analysis begins by excluding 

protected open space and other lands having permanent development restrictions from 

development. All previously built up residential, commercial and industrial areas are also 

excluded at this point (a side effect is that this model does not allow for redevelopment). 

The remaining land is then assigned values for new homes and businesses based on the 

lands’ zoning classification. In cases where there is likely to be some limitation to 

development, as in wetlands and on steep slopes or poor soils, a heuristic is applied to 

reduce the development potential of the area by some amount.  

The intent was not to build an operational model that would help towns develop 

better growth policies, but to simply spur communities to become concerned about the 

issue. No one really believes that full buildout will occur throughout the Commonwealth 

or even throughout a community. But it is well within the realm of possibility that full 

buildout could occur in a block or neighborhood, and this can have a devastating impact 

on the character of a community. 

Buildout is not a particularly exciting analysis from a modeling standpoint. There are 

only two time periods available for examination—the current state of the town, and its 

state at full development. Also, the development rules are very simple. In this model, 

development is mainly limited by environmental factors. If the land’s building capacity is 
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not constrained by steep slopes, bad soils, wetlands or floodplains, it gets developed to 

the highest density allowed by zoning. There is no accounting for economics or 

transportation constraints, for example. In addition, since time is not a part of the model, 

buildout could occur in ten years or ten thousand. However, these factors that make the 

model less realistic from a growth planning point of view are there for a reason. Each 

one of the 351 cities and towns in the Commonwealth has been run through the analysis. 

The data requirements and analytic methodology were designed to be within the abilities 

and budgets of even the smallest towns, so that the effects of development could be seen 

not only for every town, but also regionally across jurisdictions. This comprehensiveness 

makes the buildout analysis extremely interesting from the point of view of one 

interested in examining information-dependent analysis systems that have wide 

application.  

Process 

The buildout model has the following general structure: 

1. Identify zoning districts that permit development. 

2. Remove areas that are already developed (even if they might be under-developed). 

3. Remove areas that are absolutely unsuitable for development (due primarily to 

environmental constraints). 

4. Identify areas that may only support partial development due to environmental 

constraints such as the presence of wetlands or floodplains. Compute a statistic for these 

areas that indicates how much “less” developable these lands are than those with no 

constraints. 
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5. Compute the number of new residences and businesses that can be developed based on 

zoning attributes such as floor-area ration (FAR) and lot setbacks. 

The maximum bui ldout  enve lope—Zoning ( st ep 1)  

The buildout analysis uses a town’s zoning laws to determine maximum 

development. This may seem logical, but it is actually quite different from the approach 

taken in common growth models such as CUF or UrbanSim, who base their 

development estimates on more realistic assumptions than full zoning buildout. The 

point being made in Massachusetts, however, is why have a zoning plan that you have no 

desire to see realized? The intention being to have communities thoughtfully revisit their 

land use regulations from the standpoint of what do they desire twenty years from today. 

This is MassGIS’ guidance on how to integrate zoning data: 

The contractor will develop or update zoning (ZONE) and zoning overlays (OVER) 

from the most current town zoning map or maps, digitized with reference to the most 

current town zoning by-law and registered to the town boundary layer from MassGIS. 

The polygon attribute table of these GIS layers must conform to the MassGIS/RPA 

standard for attributes as implemented in the MassGIS library which is attached to this 

contract. Zoning overlays should be digitized only if they will have a real impact on 

development – in many cases they impose minor restrictions which won’t affect the 

basic buildout analysis.† 

The incorporation of zoning data into the model would seem straightforward, but 

this is complicated by the need to unify all the towns’ zoning classifications and 
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definitions to a single standard. Otherwise there would have to be a (slightly) different 

model for every different zoning manual. 

Current  bu i ldout—Land use and Subdivi s ions  ( st ep 2)  

The MacConnell land use will be part of the analysis and needs to be reclassified to 

show residential, commercial/industrial and undeveloped land.† 

Establishing baseline development involves three data inputs. MassGIS starts with a 

statewide land use coverage to identify areas already developed as residential or 

industrial/commercial. This data set was developed from aerial photography 

interpretation. Since these photographs were taken throughout the 1980s and 1990s, they 

are a bit out of date, and they are not very precise, so small, isolated land uses are missed 

due to their 1:25,000 (1 inch equals about 0.4 miles) scale value where the minimum 

mapping unit was one acre. 

In order to map subdivisions and/or to update the land use mapping, which will be critical inputs to 

the process, the contractor should look at the history of subdivision filings since the date of MacConnell 

land use mapping. If there are a sufficient number of non-ANR subdivisions to warrant, a separate 

subdivision layer should be created. Essential attribute information to be collected and assigned to the 

subdivision polygons includes subdivision-id, name, date, number of lots, number of houses built to date 

and total acreage. Ideally this information would come in soft-copy form and could be linked to the 

subdivision mapping. Additionally the contractor should obtain any available map showing the new 

subdivisions at a scale suitable for transfer to a town-wide map.† 

Augmenting this statewide land use coverage with local knowledge can solve both 

the precision and currency issues. For this reason MassGIS requires towns to update 
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land use using a higher resolution aerial photography set flown in 2001. All towns, 

however, will not have ready access to someone skilled in the art of aerial photography 

interpretation, so all that can be asked of the town is that they identify residential and 

commercial/industrial uses, whereas the official statewide land use data set classifies land 

use into 21 to 33 types, depending on who did the interpretation and when it was done.  

2001 is still a bit old for some towns, even in one of the slower growing regions of 

the country. The final input to current development is a residential subdivision data set 

that the town may optionally provide. This can only be created in a cost-effective 

manner if developers have submitted electronic plans and the local government uses 

them.   

Just like zoning, land use data must be provided to the model in a generic data 

schema, so towns must follow MassGIS’ guidance on land use updates and subdivision 

data development.  

Absolu te  cons t rain t s  to  deve lopment  ( s t ep 3)  

Some lands are considered not developable in this model. In addition to those 

already built up areas described above, there are a number of land use types that are 

excluded from development by either environmental or legal constraints. In this model, 

this refers mainly to permanently protected open space and farmland. This type of 

property is defined as “land which is held in fee ownership by a government agency or a 

private non-profit organization for the purpose of conservation or water supply 

protection or which has deeded restrictions on development” (MassGIS). MassGIS 
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already is the official maintainer of a statewide data set cataloging open space in a high 

degree of detail, so the acquisition and use of this data is trivial. 

Part ial  cons t raint s  to  deve lopment  ( s t ep 4)  

The buildout analysis has a concept of “partially developable” lands. These include 

wetlands, steep slopes and flood plains. These types of land are considered un-

developable in most models, and this model is no different in that it does not allow 

structures to be built in these areas, this model is more realistic if a portion of these areas 

are projected to be part of a built-up lot, because they could fall into that lot’s setback or 

open space allocation. 

The actual amount of development permitted in these areas is based upon a 

combination of site-specific factors, including the size of the zoning district, the size of 

the partially developable area in relation to the district, and the type of development 

allowed in the district. For this reason, these factors are computed on a case-by-case 

basis in a spreadsheet. 

Finally, after analysis of the town zoning by-law and the other source documents 

collected above, the contractor will determine if any other legal, physical or 

environmental factors will so significantly influence or constrain future development in 

the town that no reasonable buildout analysis can be done without considering them. 

Finally, MassGIS allows each town to have a “wildcard” layer. This allows towns to 

use their own judgment to exclude from development anything that the generic analysis 

overlooked. This is a very interesting feature of the methodology, as it seems to 

contradict the basic principles of doing a standardized analysis. But in order to have truly 
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committed participation in the system, this is a useful way to make sure every town’s 

unique needs are addressed. 

Bui ldout  computat ion ( st ep 5)  

Three types of summary table may be produced from the polygon attribute table for potentially 

developable land from step 7. One table gives, for each zoning district classification, the total area within 

the town for each combination of constraints present within that zoning district. Thus, if floodplains are 

mapped as a partial constraint, the town might have 2000 hectares of R1 district without any constraint, 

and an additional 100 hectares of land in the R1 district that are in the 100 year floodplain. This table 

can be the basis of the analysis of a generalized analysis that provides a rough estimate of buildout 

potential. If all constraints are treated as absolute constraints, then there is simply one record for each 

zoning category giving the total potentially developable area within that district.  

      Optionally, a second, more detailed analysis will require summarizing by individual zoning 

polygon – this would be appropriate where the distribution of partial constraints is very irregular and 

certain polygons end up with little or no allowable building because of an atypical concentration of 

constraints. In this case, the zoning polygon –id should be referenced to a map with those –ids printed for 

the individual zoning polygons. Finally, if parcel mapping is available, the analysis can be done to 

summarize for each parcel (or each parcel above a certain minimum) the characteristics of that parcel.† 

The buildout is ultimately a computation of the number of new residences and 

offices that may be developed. The analysis just described, which was mainly spatial in 

nature, provides a list of zoning districts and the proportion that may be developed. In 

the case of areas with no constraints, this proportion is 100%. In areas with partial 

constraints, the number is less, and where the constraints are absolute, the number is 
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zero. At this point, it is a matter of simple mathematics to compute the number of 

structures that can be developed based on the zoning code’s attributes, such as minimum 

lot size, setback requirements, road frontage, etc. This step is also performed in a 

spreadsheet environment. 

The resu lt s  

The results of a buildout analysis are a series of maps and statistics describing 

maximum buildout potential in the municipality. The series of maps have already been 

presented here, and they serve the same purpose as they do here, which is to graphically 

illustrate the analytic process. The statistics are the buildout computation described in 

step 5. It is worth reiterating that the intended result is not to tweak this model so that 

the maximum buildout based on zoning regulations matches the town’s development 

objectives. EOEA simply hoped to catalyze local interest in urban growth policy. This is 

no different, however, than the goal of most planning efforts—even those based heavily 

on expert analysis. 
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Figure 3-1: Absolute Constraints for Sutton, MA Buildout 
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Figure 3-2: Developable Lands and Partial Constraints for Sutton, MA Buildout 
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Figure 3-3: Composite Development for Sutton, MA Buildout 
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Figure 3-4: Zoning for Sutton, MA Buildout 
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Key Concepts & Systemic Problems 

This section highlights key aspects of the buildout analysis’ methodological structure 

and information requirements in order to develop an argument regarding why the 

procedures used have inherent, systemic drawbacks that can not be addressed without a 

major shift in the way organizations integrate information technology into their work. 

By most accounts, the buildout analysis has been a qualified success in that it has 

brought growth management tools to every town in the state in a consistent way 

(Hodges, 2004). Most Massachusetts’ towns are small and have almost no full-time 

government, let alone planning staff—yet home rule dictates that land use decisions be 

made at the local level. Combine this with the lack of any significant government 

structure at the county level, and the Commonwealth is left with a significant challenge 

to its ability to manage development. The buildout analysis tries to bridge this gap by 

presenting growth from the perspective of real land use policies, instead of abstract 

projections of trends in migration, job creation, housing policy and such. This strategy is 

powerful because it is based on the data, policies and regulations that towns control. But 

on the other hand, basing a model on real data and real laws creates the expectation that 

the model is integrated with those data and always up to date.  This, of course, is where 

we want to be as a profession; but not where we are now. 

Aside from the actual veracity of the model, some would say that the real purpose of 

the project has been to spur interest in land use planning and growth management. From 

a policy perspective this could lead to positive change without a buildout analysis leading 

directly to a change in zoning. However, it seems like a waste of money to simply use 
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“scientific” analysis to generate interest in a topic. More attention must be paid to what it 

actually means to use the buildout analysis to continuously inform an ongoing planning process. In 

other words, if the project is able to spark a policy debate, it should be a useful tool in 

that debate and should continue to provide stakeholders with a means to develop 

knowledge out of the vast quantity of information we maintain about place during 

normal government operations. 

What follows is a critique of the buildout analysis, despite the fact that it represents 

“good” planning analysis and mechanisms for stakeholder participation. It still suffers 

from a host of systemic problems in the way the study is designed and executed. These 

problems are so important because they are present in most planning support systems, 

so a close study of MassGIS Buildout should be useful as a general theory. The large, 

systemic issues highlighted here so that they may be addressed throughout the rest of 

this paper. 

 

Simple  math 

The simplest aspect of buildout is the analytic methodology. The basic concept is to 

perform the type of site selection analysis that planners have used for decades (Lynch 

and Hack 1984). Instead of a single site, however, the analysis is performed for an entire 

town, being limited mainly by environmental constraints, which are determined in a 

manner which differs little from Ian McHarg’s seminal overlay techniques (McHarg 

1969).  
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So the analytic theory behind buildout is thirty years old, but so is the math. Areas to 

be developed are determined by cutting out unsuitable lands from the zoning map. This 

basic type of spatial overlay is what geographic information systems were created for in 

the 1960s. Buildout uses none of the latest techniques like spatial statistics or agent-

based modeling. After developable areas are identified, the actual amount of 

development is determined by overlaying areas that impose partial constraints on 

construction. This concept is expressed as a potential construction percentage, between 

0 and 100, and the maximum amount of development allowed by zoning is multiplied by 

this percentage. This part of the analysis could have easily been performed twenty years 

ago using Tomlin’s map algebra language and software (Tomlin, 1983). But MassGIS 

chose to simplify it even further, by performing this step in a spreadsheet, so that the 

technical requirements are acceptable to virtually every person in the state.  

Extens ive  data requirements ,  from mult iple  agenci e s  

The buildout project’s data requirements stand in stark contrast to the simplicity of 

the analysis. MassGIS has developed a large storehouse of GIS data for Massachusetts, 

especially pertaining to the natural environment. Buildout uses many of their statewide 

data sets, including open space, land use, aerial imagery, wetlands, flood plains, 

topography, areas of critical environmental concern, and roads. While most of these are 

developed, or at least edited by MassGIS, some come directly from federal government 

agencies such as USGS and Census. This information has all been put online in a single 

archival data format and documented formally. MassGIS has performed regular updates 

of their data warehouse and consistently maintained online access for years. 
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The creation of the zoning data set is unique in that zoning is created and controlled 

by each individual town. Especially in a home rule state like Massachusetts, it is difficult 

to translate every town’s zoning regulation to a common standard, so the development 

of a statewide zoning layer is even more impressive. 

The final data requirement is for the most recent subdivisions, which serve to update 

the land use plan with the latest development. Up to this point, we have had the 

involvement of a state GIS agency, one or two federal agencies, and the municipal 

zoning board. Subdivision data brings in the local assessors office, and may even require 

data from private developers, giving the project an information landscape that includes 

every type of data provider except for individual residents.  

Zombie  data 

This might sound like a strange term to use in a scientific paper, but our profession 

currently has no term to describe this condition (and it is hard to solve a problem you 

can not name). Zombie data is not quite alive, because it has been detached from its 

native environment and is no longer being checked and updated. However, it is not quite 

dead because it is still being used in the way only living data should be. 

Administrative agencies usually are the only ones with living data, and planners 

almost always have zombie data. For example, town assessors and registries of deeds 

have ownership and cadastral information; building departments have construction 

permits and new subdivision applications; and banks have the latest sales and loan-to-

value ratios. But planners usually have old, out of date data sets that have a life of their 

own. Not only do these data sets get used in analyses, they move around in planning 
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support systems, sometimes supplemented with additional calculations or personalized 

updates when they should have been replaced by fresh, live data a long time ago. And 

since they are not simply out of date, but may actually contain useful new information, 

they are even more difficult to put to rest and replace with an updated copy. 

Often the issue is less of a methodological one, because an analysis based upon 

slightly out of date information is probably still sound. The larger issue is likely to be 

public confidence. Most people (in fact, anyone who did not construct the analysis) will 

not have the time or the inclination to understand the analysis well enough to know 

whether its results require the most up to date information. They will simply assume that 

outdated data equals an outdated analysis. So the problem of zombie data is threefold: It 

can invalidate the results of an analysis; it can make future updates difficult; and it can 

shake public confidence in the study. 

In the case of MassGIS Buildout, the two data sets that are most susceptible to this 

problem are parcels and zoning. Property development is always one of the most 

dynamic data urban data sets, and when the study is about growth, new development is 

under an even brighter spotlight. The buildout analysis highlights the importance of 

accurate, current parcel information by discussing a number of ways to acquire it. There 

is no mention, however, of how to make the information gathering process replicable 

across towns, or over time. 

Stakeholder part i c ipat ion  

Oddly enough, the buildout system architecture does little to facilitate or encourage 

its stated goals. Just as strange is that this is not uncommon. Remember that the goal is 
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to educate communities about the impact of unchecked development and motivate them 

to rationally plan for growth. The Community Preservation Act as a whole is able to 

work towards these goals, but the analysis piece is disconnected from the policy work.  

The inclusion of stakeholders’ concerns into the planning process is always 

mentioned as an important phase of the project, but what are we doing methodologically to 

facilitate this interaction? Is there any mention of how feedback is incorporated into the 

model, or at least the public record of the project? What is the project’s public record 

anyway? The lack of attention to these questions is by no means unique to the buildout 

project. The two disciplines of analysis and collaborative decision making seem to always 

be holding each other at arms length. At this point the intention is only to draw attention 

to the concern, so that we may come back and address it later in the paper.  

Interac t i ve  end-produc t  

The standard deliverable from a project of this type is a bound paper report 

containing maps and tables embellished with plenty of explanatory text. The buildout 

analysis provides these for all 351 Massachusetts’ municipalities, but two other more 

interactive end-products are also offered, putting the project on the leading edge of 

providing the public with participatory tools and transparency in government operations. 

The first interactive end-product is accessed through the EOEA’s Community 

Preservation Web site, 

http://commpres.env.state.ma.us/content/buildout.asp. Here a visitor can 

create a regional buildout analysis by choosing any number of towns within a region. The 

site basically adds up the data for each town chosen on-the-fly. While this is 
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computationally simple, it provides some limited ability to see what the aggregate 

impacts of development might be. 

The second product may be downloaded from this Web site, but it must be run on 

one’s own Windows™-based desktop computer. This product consists of the GIS data 

files used to create the “official” buildout analyses, plus proprietary scripts to reproduce 

the analysis. If an individual or group can meet the software requirements—ESRI 

ArcView GIS and Microsoft Excel—and has the technical capacity to use the software 

and understand the analytic methodology, all aspects of the analysis can be altered and 

re-generated (Jacqz, 2004). 

For the sake of discussion, let’s assume that all municipalities have easy access to 

ArcView, are skilled in its use, have in-house planning expertise, and have a complete 

understanding of all aspects of the modeling process. In this scenario, a town is able to 

take the analysis and update the base data to account for changes in zoning, new 

developments, open space acquisitions and such. In this way, the analysis for the town 

can always be up to date and accurate. They may also challenge some of the model 

assumptions and want to adjust variables like the average number of children per 

household, water and sewer usage, or automobile trip generation.  

As you can see, the buildout analysis can be a powerful planning tool in the right 

hands. The first inherent problem with this utopian scenario is that most Massachusetts 

communities have no planning staff—professional or amateur—so it is highly unlikely 

that more than twenty to thirty of the state’s 351 municipalities have the resources to 

contemplate making buildout analysis a regular part of their quarterly or yearly planning 

work. 
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The Community Preservation Act tries to address this by providing grant money to 

hire consultants, but these funds may only be available once or twice in a twenty year 

period, so the buildout analysis is likely to remain a static document. And while larger 

towns have the staff to use the buildout analysis, they are the most likely to ignore it 

because the methodology only allows new construction on undeveloped land. This 

works best in rural and suburban areas, which have little or no regular planning staff, not 

our dense cities like Boston, Framingham, Lawrence, New Bedford or Worcester, where 

new development will usually involve infill, or the replacement of pre-existing structures. 

If the buildout analyses are to be used effectively by smaller towns, it will have to be 

through a partnership between towns and regional planning agencies (RPAs). But this 

brings data issues back to the forefront. Municipalities can not even share data across 

departments, let alone with another level of government, so we are left with a systemic 

mismatch between information flows, land use regulation and planning analysis. In my 

opinion, addressing this mismatch is one of the decade’s great challenges for planning 

support systems. 

Next steps 

Major shortcomings in the Buildout analysis have now been identified. Information 

technology offers numerous solutions to those problems, which will all require tradeoffs 

in regards to cost, complexity and business process re-engineering. Therefore it is critical 

that the chosen solution be based upon sound theories describing the nature of the 

problem. This chapter developed those theories and showed their relevance to the 

Buildout analysis. Some strong suggestions were made regarding the problems 
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technology should solve to move the profession forward. The rest of the paper presents 

one solution—a suite of technologies that conform to the theoretical foundation laid 

down here, and have the ability to fundamentally and structurally improve the efficacy of 

planning support systems.  
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Chapter 4.  Sharing Data through Web Services 

Data sharing would seem to be a simple task. Agencies have been making their data 

publicly available through the Internet since the 1980s. The World Wide Web in its early 

form can be thought of as a big, read-only file sharing network. High-speed networks 

allow gigabytes of data to be moved from one place to another in very little time, and the 

cost of these networks keeps decreasing. So why is sharing data still a problem? 

In the buildout analysis, a host of data sources are used. In the case of zoning, the 

primary challenge was translating each town’s zoning categories into matching categories. 

With land use, the big problem was finding and acquiring the most up-to-date data 

sources, systematizing their inclusion into the analysis. The latest data is usually the most 

disaggregated, and in the hands of the smallest organizations with the least incentive to 

participate in a larger system. In this case these are the developers who are building the 

newest residential subdivisions.  

Sharing data with government, and supporting planning support systems are not the 

primary mission of developers, yet highly detailed data sets are critical in an urban 

information infrastructure. They are usually created and maintained by small, local 

organizations, so there must be a mechanism for data publishing that conforms to their 

level of technological sophistication. However, at the other end of the spectrum the 

system must be sophisticated enough to support complex analyses. This chapter lays out 

a Web services strategy for meeting these seemingly conflicting goals. 
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WSDL 

We start with a very simple example, because an important design element is the 

ability to offer simple solutions for simple requirements. In this case, the requirement is 

to enable an organization to publish spatial data as easily as they publish Web pages. The 

most common spatial data format is the ESRI Shapefile. Shapefiles are like Adobe PDF 

files in that the data format is public and free to use, and the files are small and easily 

emailed, making the Shapefile the de facto standard in the GIS world. Instead of simply 

placing these files on a Web site, publishing them through a Web service interface allows 

the data to be more tightly integrated into information processing systems, hopefully in a 

more fully automated manner. 

First of all, it is important to emphasize the similarities between a Web site and a 

Web service. In the strictest sense, any part of a Web site can be a Web service if it is 

described formally. For example, a Web page is a text file containing data in Hypertext 

Markup Language (HTML). It is accessed using the Hypertext Transfer Protocol 

(HTTP) by sending a GET request to a particular Universal Resource Locator (URL). If 

the previous two sentences are written formally in a particular dialect of XML called 

Web Services Description Language (WSDL), the Web page becomes a Web service. 

Code Listing 4-1 presents a simple WSDL file that serves to publish a Shapefile as a 

Web service. A WSDL file has four sections, service, binding, interface, and types. 

The service section tells a user what Web address to access in order to invoke the Web 

service. The interface sections tells the user what commands the service understands, 

and the types section describes the format of these commands and the responses that 

may be returned. The binding section has technical details relating to how the commands 
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described in the interface section must be expressed in a particular language. A service 

could have one interface and many bindings, meaning that the same command can be 

expressed in many different languages. Another important concept is that the WSDL 

expression of a service is an abstraction. There could be other Shapefiles on this Web 

site, and they may or may not be “published.” There could also be other services that 

“publish” the same data, but use a different WSDL file—meaning that the data is 

published in a different way to a different audience.  

In this way the Web service can be crafted to meet the exact requirements of an 

organization. This can be a useful concept if we think of the WSDL file as bridging the 

gap between organizational and technical concerns. In formally describing the data 

sources, and the means of accessing them in a highly structured manner, WSDL 

becomes not only a technical solution to data sharing, but a contract between the data 

provider and the data user. This is the contract that trading partners require to ensure a 

stable relationship in regards to information exchange.  

Basic Data Sharing: one Shapefile 

In order to publish a Shapefile as a Web service, three things must be put on a Web 

server: 

1. The data files being published. 

2. A WSDL file describing certain generic aspects of a Shapefile. 

3. An XML file describing the specific Shapefile being published. 

The generic aspects of a Shapefile are described in the types section of Code Listing 
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4-1. We see there an XML Schema element called ShapefileWriter, named so to 

distinguish between a service message that outputs, or writes, a Shapefile, and one that 

ingests, or reads one. Note the XML attribute srsName. All spatial data has a particular 

spatial reference system (SRS)—a way of referencing locations on the earth. 

Cartographers have hundreds of different ways of doing this, based on tradeoffs 

between accuracy, scale and other considerations. These different systems have all been 

given a name, and that is what would be stored in the srsName attribute. of the 

ShapefileWriter element. Shapefiles store their data in three files having .shp, .dbf, and 

.shx suffixes. The locations of these files are specified in the ShpFile, DbfFile, and 

ShxFile elements as URLs. 

The interface, binding, and service sections combine to say that the Web request, 

http://www.city.us/wetlandsShapefile.xml, will be answered with an XML file 

conforming to the XML Schema defined by the ShapefileWriter element. In this case, 

a possible response is shown in Code Listing 4-2. A small, unsophisticated agency could 

put the two XML files on their Web site along with the three Shapefile components, and 

consider the data published by giving interested parties the URL to the WSDL file. This 

is the bare minimum required to participate in the collaborative framework envisioned in 

this paper. 
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Code Listing 4-1: WSDL file for Shapefile publishing 
 

<definitions name="DataPublishing”> 
 
<types> 
 <xs:schema targetNamespace="http://web.mit.edu/pamml.wsdl"> 
  <xs:element name=”ShapefileWriter” type=”ShapefileWriterType”/> 
  <xs:complexType name=”ShapefileWriterType”> 
   <xs:sequence>   
    <xs:element name=”ShpFile” type=”xs:anyURI”/> 
    <xs:element name=”DbfFile” type=”xs:anyURI”/> 
    <xs:element name=”ShxFile” type=”xs:anyURI”/> 
   </xs:sequence> 
   <xs:attribute name=”srsName” type=”xs:string”/> 
  </xs:complexType> 
  <xs:element name=”NullMessage” nillable=”true”/> 
 </xs:schema> 
</types> 
 
<interface name="PublishDataInterface"> 
 <operation name="GetData" pattern="http://www.w3.org/2003/11/wsdl/in-out"> 
  <input message="tns:NullMessage"/> 
  <output message="tns:ShapefileWriter"/> 
 </operation> 
</interface> 
 
<binding name="PublishDataBinding" type="tns:PublishDataInterface"> 
 <http:binding verb=”GET”/> 
 <operation name=”HTTPBindingGetDataOperation> 
  <http:operation location=”/wetlandsShapefile.xml”/> 
  <input> 
   <http:urlReplacement/> 
  </input> 
  <output> 
   <mime:content type=”text/xml”/> 
  </output> 
 </operation> 
</binding> 
 
<service name="PublishDataService"> 
 <documentation>Geospatial data accessible from this server</documentation> 
 <endpoint name="DataServiceURL" binding="tns:PublishDataBinding"> 
  <http:address location="http://www.city.us"/> 
 </endpoint> 
</service> 
 
</definitions> 

 

Code Listing 4-2: XML instance document for Shapefile publishing 
 

<ShapefileWriter srsName=”EPSG:26986”> 
 <ShpFile dataFile=”http://www.city.us/wetlands.shp”/> 
 <DbfFile dataFile=”http://www.city.us/wetlands.dbf”/> 
 <ShxFile dataFile=”http://www.city.us/wetlands.shx”/> 
</ShapefileWriter> 
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A full explanation of the WSDL specification is beyond the scope of this work. 

However it is important to note a few characteristics of this approach. A WSDL file is 

quite complex, and a small organization would probably need to contract out for its 

development. But still it is only a text file, so no additional software or hardware, beyond 

what is required to publish Web pages, is needed to participate in what will be shown to 

be a sophisticated system. This point is so important because it matches so well the way 

organizations function. Most organizations—even small non-profits—are able to initiate 

large, complex projects because it is at the beginning when the project’s champions are 

still in place and there is usually some commitment of resources. Problems usually arise 

over time, or after the project is “officially” over (meaning no longer explicitly funded), 

when time, maintenance and upkeep must be incorporated into a general operational 

cost structure. With finite resources and turnover in leadership, old projects tend to lose 

funding and time commitments and cease to operate if their upkeep requires any 

extraordinary effort. In publishing this Web service we have a complicated project 

initiation stage, where the data and XML files must be created and posted on the Web 

site, but a simple maintenance stage that only requires the upkeep of a Web server, 

which is probably critical to other organizational initiatives as well. 

Professional Data Sharing 

The previous section focused on the requirements of small agencies whose 

technology infrastructure was limited to a Web server. This is a sensible baseline 
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technology, considering that even millions of individuals in the U.S. have their own Web 

site. The implementation strategies outlined above do not meet the needs of 

professionals, however. GIS agencies, planners, assessors, and the like have broader 

requirements, and a more sophisticated technology infrastructure, than a basic Web 

server. In this section we address the needs of these more traditional spatial data 

providers. Generally, these are municipal, regional and state agencies that publish 

numerous data sets, often in multiple formats. Sometimes these data sets do not reside 

on disk, but in a database, or are generated on request. Another important characteristic 

of these kinds of organizations is that they often update their data, so their customers 

must be made aware of this fact and consider the update event in managing their own 

business processes. Finally, these agencies are concerned about their data’s provenance. 

Making sure their users know when a data set was created, last updated, or its level of 

accuracy are concerns that have significant organizational, if not legal, ramifications. 

Metadata 

Information about a data set is generally referred to as metadata. The subject of what 

should be recorded in metadata is an active field of inquiry. In the U.S., the Federal 

Geographic Data Committee (FGDC) has for over a decade championed the FGDC 

Metadata Standard. Internationally, the International Standards Organization (ISO) has 

issued a standard called Geographic Information — Metadata, which is commonly 

referred to by its document identification number, ISO19115.  What these organizations 

are trying to do is to capture, in broad terms, the general characteristics of geographic 

information so that potential users can search for information relevant to their task, and 

quickly decide whether that information meets their needs. This involves capturing 
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spatial metadata, such as the geographic extent of a data set, attribute metadata, such as 

the names and data types of attributes, and administrative metadata, such as the 

responsible agency, date of creation, and update frequency. 

Metadata is not the focus of this research, but it certainly plays a complementary 

role. The latest metadata standardization efforts of organizations like the FGDC, ISO, 

and OpenGIS rely on XML technologies, so the XML-focused work presented here can 

easily incorporate metadata by simply using XML’s built-in extensibility mechanisms. 

Code Listing 4-3 supplements the XML definition of ShapefileWriter from Code 

Listing 4-1 to support metadata. A new element, Metadata, is added to the object, and it 

is defined in a very general way in the MetadataType object. This is simply an object that 

can have any XML content in it, allowing an organization to incorporate their metadata 

efforts with their distributed planning support systems work. 

 

Code Listing 4-3: Adding metadata to data 
 

<xs:element name=”ShapefileWriter” type=”ShapefileWriterType”/> 
 
<xs:complexType name=”ShapefileWriterType”> 
 <xs:sequence> 
  <xs:element name=”Metadata” type=”MetadataType”/> 
  <xs:element name=”ShpFile” type=”xs:anyURI”/> 
  <xs:element name=”DbfFile” type=”xs:anyURI”/> 
  <xs:element name=”ShxFile” type=”xs:anyURI”/> 
 </xs:sequence> 
 <xs:attribute name=”srsName” type=”xs:string”/> 
</xs:complexType> 
 
<xs:complexType name=”MetadataType”> 
 <xs:sequence> 
  <xs:element name=”Publisher” type=”xs:string”/> 
  <xs:element name=”Date” type=”xs:date”/> 
  <xs:any minOccurs=”0” maxOccurs=”unbounded”/> 
 </xs:sequence> 
</xs:complexType> 
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Obj e c t  inheritance ,  and sharing mult iple  f i le s  through a s ingle  s ervi c e  

The number of common spatial data formats seems endless. Organizations that 

publish spatial data often make it available in multiple formats, to support the various 

software environments of their users. There are a number of file-based formats that are 

similar to Shapefiles in that they are defined by the locations of their component files. 

Another big class of spatial data format is the spatial relational database. This includes 

Oracle Spatial, IBM DB2, PostGIS, and MySQL. Accessing data in these formats 

generally involves making a database connection, which requires some authentication 

and network location information. An example of how a PostGIS data source could be 

modeled is shown in Code Listing 4-4.  

Code Listing 4-4: Accessing spatial data in PostGIS 
 

<xs:element name="PostGISWriter" type="pamml:PostGISWriterType"/> 
 
<xs:complexType name="PostGISWriterType"> 
 <xs:sequence> 
  <xs:element name="User" type="xs:string"/> 
  <xs:element name="Passphrase" type="pamml:PassphraseType"/> 
  <xs:element name="Host" type="xs:anyURI"/> 
  <xs:element name="Port" type="xs:int"/> 
  <xs:element name="Driver" type="xs:string"/> 
 </xs:sequence> 
 <xs:attribute name="srsName" type="xs:string"/> 
</xs:complexType> 

 

Notice that, like ShapefileWriter, PostGISWriter has the srsName attribute. It 

would also have the Metadata element, if fully defined, but instead of repeatedly defining 

objects that are common to many other objects, XML allows objects to inherit the 

characteristics of another. What we would like to say is that every data model in our 

system may have metadata, and must have a spatial reference system definition. Code 

Listing 4-5 expresses this.  
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Notice that Metadata is defined in the ModelType object. Here we introduce the 

concept that some data models might not represent spatial data. Every model may have 

metadata, but those that represent spatial data also have a spatial reference system (the 

srsName attribute modeled in the GeoData object). The concept of inheritance will be 

used extensively in this work. It not only provides clarity to an information model, but 

offers practical benefits in system implementations. 
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Code Listing 4-5: An object-oriented model of spatial data 
 

<xs:element name="Model" type="ModelType"/> 
<xs:complexType name="ModelType"> 
 <xs:sequence> 
  <xs:element ref="Metadata" minOccurs="0"/> 
 </xs:sequence> 
</xs:complexType> 
 
<xs:complexType name="GeoDataType"> 
 <xs:complexContent> 
  <xs:extension base="ModelType"> 
   <xs:attribute name="srsName" type="xs:string" use="required"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
 
<xs:element name="ShapefileWriter" type="ShapefileWriterType"/> 
<xs:complexType name="ShapefileWriterType"> 
    <xs:complexContent> 
  <xs:extension base="GeoDataType"> 
   <xs:sequence>   
    <xs:element name="ShpFile" type="xs:anyURI"/> 
    <xs:element name="DbfFile" type="xs:anyURI"/> 
    <xs:element name="ShxFile" type="xs:anyURI"/> 
   </xs:sequence> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
 
<xs:element name="PostGISWriter" type="PostGISWriterType"/> 
<xs:complexType name="PostGISWriterType"> 
    <xs:complexContent> 
  <xs:extension base="GeoDataType"> 
         <xs:sequence> 
    <xs:element name="User" type="xs:string"/> 
    <xs:element name="Passphrase" type="PassphraseType"/> 
    <xs:element name="Host" type="xs:anyURI"/> 
    <xs:element name="Port" type="xs:int"/> 
    <xs:element name="Driver" type="xs:string"/> 
   </xs:sequence> 
  </xs:extension> 
    </xs:complexContent> 
</xs:complexType> 
 
<xs:element name="GeoDataModels" type="GeoDataModelsType"/> 
<xs:complexType name="GeoDataModelsType"> 
 <xs:sequence> 
  <xs:element name="GeoDataModel" type="GeoDataType" maxOccurs="unbounded"/> 
 </xs:sequence> 
</xs:complexType> 

 

Developing a better object-oriented data model also provides flexibility when we 

look at publishing more complex data services. In theory, multiple data sets could be 
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published using the strategy recommended above (for a small agency publishing one 

Shapefile). In practice, however, this system could be difficult to maintain for the 

publisher, because it requires each data set to have its own WSDL file, and since they will 

all be very similar, making a small change, such as updating the agency’s phone number, 

requires changes to many files. The way organizations have traditionally published data 

has been to advertise one Web site with data download functionality. Perhaps this “data 

warehouse” paradigm is less compelling in a Web services framework, and it is better to 

use the one data set per service concept, but that is a debate for another time. Here we 

simply show that the data warehouse idea can be supported.  

Code Listing 4-6 describes a Web service that publishes multiple data sets in multiple 

formats. The main difference between this service and the basic one is that there must be 

a “conversation” between the client and the service to determine which data set to give 

the client and in what format. In the most general sense, this is a search task. The client 

is searching for data of a particular type, and will be able to identify it by some 

characteristic, like its name, subject matter or geographic region. Searching and 

cataloging will probably only be done well by specialized services. This is the case with 

the Web in general. Individual Web sites used to all have their own internal search 

engine, but nowadays most sites let Google handle search.  

While a handful of the largest spatial data libraries may implement their own search 

and cataloging functionality, most will only need to publish a short list of data sets in 

their holdings. This is best accomplished by creating an object that lists spatial data 

models. The GeoDataModelsType object shown in Code Listing 4-5 fills this role. Code 

Listing 4-6 shows how that list of available data sources is accessed by making a 
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GetDataListing request to the service (in this example, the service is invoked using a 

SOAP binding). From this list, the user can choose the data set they desire. The final 

problem to solve is how services uniquely identify data sets. The most common way of 

doing this is to give every object a unique ID. While this requires some mechanism to 

ensure that the ID is unique, in the Internet space this is usually made easier by the 

ability of an organization to prefix the identification token with their Internet domain 

name, avoiding cross-organization naming problems. In order to employ this strategy a 

new attribute must be added to all of our model objects, so we add an id attribute to the 

ModelType object. This allows the requesting client to get at the id attribute of the 

model, which is needed to make a full model request using the GetDataSourceByID 

message of the GetDataSource operation.  
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Code Listing 4-6: Service description (WSDL) for data publishing 

<definitions name="DataPublishing”> 
<xs:import namespace="http://web.mit.edu/pamml"  
    location="http://web.mit.edu/pamml.xsd"/> 
<types> 
 <xs:schema targetNamespace="http://web.mit.edu/pamml.wsdl"> 
  <!—- insert elements from Code Listing 4-5 --> 
  <xs:element name="GetDataListing" nillable=”true”/> 
  <xs:element name="GetDataSourceByID" type="xs:string"/> 
 </xs:schema> 
</types> 
 
<interface name="PublishDataInterface"> 
 <operation name="QueryData" pattern="http://www.w3.org/2003/11/wsdl/in-out"> 
  <input message="tns:GetDataListing "/> 
  <output message="tns:GeoDataModels"/> 
 </operation> 
 <operation name="GetDataSource" pattern="http://www.w3.org/2003/11/wsdl/in-out"> 
  <input message="tns:GetDataSourceByID"/> 
  <output message="tns:GeoDataModel"/> 
 </operation> 
</interface> 
 
<binding name="PublishDataSOAPBinding" type="tns:PublishDataInterface"> 
 <soap:binding style="document"  
       transport="http://schemas.xmlsoap.org/soap/http"/> 
 <operation name="QueryService"> 
  <soap:operation soapAction="http://www.scituate.ma.us/QueryService"/> 
  <input> 
   <soap:body use="literal"/> 
  </input> 
  <output> 
   <soap:body use="literal"/> 
  </output> 
 </operation> 
 <operation name="GetData"> 
  <soap:operation soapAction="http://www.city.us/DataService"/> 
  <input> 
   <soap:body use="literal"/> 
  </input> 
  <output> 
   <soap:body use="literal"/> 
  </output> 
 </operation> 
</binding> 
 
<service name="PublishDataService"> 
 <documentation>Geospatial data accessible from this server</documentation> 
 <endpoint name="DataServiceURL" binding="tns:PublishDataSOAPBinding"> 
  <soap:address location="http://www.city.us/DataService"/> 
 </endpoint> 
</service> 
 
</definitions> 
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Sharing data in  mult iple  formats  

In Code Listing 4-6 we did not explicitly define a mechanism for publishing the same 

data set in multiple formats. We only devised a way to publish multiple data sets. Those 

data sets could represent the same data, but it would be nice to have a way to make this 

relationship explicit. The concept that an output data source is really one concrete 

representation of some abstract data object is an important one, though. The unique ID 

just discussed pertains to one particular concrete instance of the data—a Shapefile, 

PostGIS source, etc.—not the underlying data model, which should be described aside 

from its output format. For our data modeling efforts, this means that any object that 

outputs data should have some internal representation of spatial data, as shown in Code 

Listing 4-7, where ShapefileWriter and PostGISWriter now have an internal 

GeoDataType object. If an organization published a data set in Shapefile and PostGIS 

formats, this internal object could be the same (have the same ID), although the 

ShapefileWriter and PostGISWriter objects would have different IDs (and would 

rightly be semantically different objects). The information modeling tools required to 

design this structure are readily available in the XML language, making it easy to add this 

level of inheritance, indirection and nesting. 
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Code Listing 4-7: Modeling spatial data output 
 

<xs:complexType name="ShapefileWriterType"> 
    <xs:complexContent> 
  <xs:extension base="GeoDataType"> 
   <xs:sequence>   
    <xs:element name="ShpFile" type="xs:anyURI"/> 
    <xs:element name="DbfFile" type="xs:anyURI"/> 
    <xs:element name="ShxFile" type="xs:anyURI"/> 
    <xs:element name="DataSource" type="GeoDataType"/> 
   </xs:sequence> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
 
<xs:complexType name="PostGISWriterType"> 
    <xs:complexContent> 
  <xs:extension base="GeoDataType"> 
         <xs:sequence> 
    <xs:element name="User" type="xs:string"/> 
    <xs:element name="Passphrase" type="PassphraseType"/> 
    <xs:element name="Host" type="xs:anyURI"/> 
    <xs:element name="Port" type="xs:int"/> 
    <xs:element name="Driver" type="xs:string"/> 
    <xs:element name="DataSource" type="GeoDataType"/> 
   </xs:sequence> 
  </xs:extension> 
    </xs:complexContent> 
</xs:complexType> 

 

Some practical considerations 

In addition to creating a Web services framework, the research agenda included 

prototyping applications that implement the services (presented in Chapter 7). From this 

experience, a number of issues emerged that did not arise in the pure data modeling 

exercise. These do not have a direct significance to any planning problem, but were 

crucial in designing a language from which applications could be developed. These 

features must be presented now for the upcoming code examples and graphics to make 

sense. 
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Spat ial  data typing i s sues  

Most important is that the abstract concept of spatial data has little use in application 

development. GIS software is designed to work primarily with one of two types of 

spatial data, vector and raster. Furthermore, the overwhelming majority of vector data 

formats model spatial objects as a set of geometry objects (one of the seven “simple 

features” defined in the OpenGIS Consortium Abstract Specification) linked to an 

attribute table. Raster data sets are even simpler, with each cell having only one attribute. 

The common models for vector and raster data sets are shown in Code Listing 4-8, Code 

Listing 4-9, and Figure 4-1, along with the rest of the spatial data model hierarchy used 

in this work.  

Efficient design of a data processing application requires that the type of data be 

known beforehand. It also helps to know what attributes the data set has, as well as their 

types. Therefore we include attribute information in the VectorDataType’s AtributeInfo 

object. For example, a client may want to access wetlands data in conjunction with a 

habitat model. One simple application would be to summarize the different types of 

wetlands present. This would require knowing what data attribute contained the 

information describing the wetland type, so it is extremely helpful to advertise these 

features of the data set. This concept is discussed in more detail later. In fact, only the 

most important modeling concepts are discussed in this text. Many decisions made to 

facilitate practical implementations are only detailed in the full, working XML Schema in 

Appendix A. 
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Code Listing 4-8: The complete spatial data model hierarchy 
 

<xs:complexType name="ModelType"> 
 <xs:sequence> 
  <xs:element ref="Metadata" minOccurs="0"/> 
 </xs:sequence> 
</xs:complexType> 
 
<xs:complexType name="GeoDataType"> 
 <xs:complexContent> 
  <xs:extension base="ModelType"> 
   <xs:attribute name="srsName" type="xs:string" use="required"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
 
<xs:complexType name="VectorDataType"> 
 <xs:complexContent> 
  <xs:extension base="GeoDataType"> 
   <xs:sequence> 
    <xs:element ref="AttributeInfo" minOccurs="0"> 
    </xs:element> 
   </xs:sequence> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
 
<xs:complexType name="RasterDataType"> 
 <xs:complexContent> 
  <xs:extension base="GeoDataType"> 
   <xs:attributeGroup ref="rasterAttributes"/> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
 
<xs:complexType name="ShapefileWriterType"> 
    <xs:complexContent> 
  <xs:extension base="VectorDataType"> 
   <xs:sequence>   
    <xs:element name="ShpFile" type="xs:anyURI"/> 
    <xs:element name="DbfFile" type="xs:anyURI"/> 
    <xs:element name="ShxFile" type="xs:anyURI"/> 
   </xs:sequence> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
 
<xs:complexType name="ASCIIIntegerGridReaderType"> 
 <xs:complexContent> 
  <xs:extension base="RasterDataType"> 
   <xs:sequence> 
    <xs:element name="DataFile" type="DataFileCompressable"/> 
   </xs:sequence> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
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Code Listing 4-9: Spatial and tabular data feature definition 
 

<xs:element name="AttributeInfo" type="pamml:AttributeInfoType"/> 
 
<xs:complexType name="AttributeInfoType"> 
 <xs:sequence> 
  <xs:element ref="pamml:Attribute" maxOccurs="unbounded"/> 
 </xs:sequence> 
</xs:complexType> 
 
<xs:element name="Attribute"> 
 <xs:complexType> 
  <xs:attribute name="name" type="xs:string" use="required"/> 
  <xs:attribute name="dataType" type="xs:anySimpleType" use="required"/> 
  <xs:attribute name="minVal" type="xs:string" use="optional"/> 
  <xs:attribute name="maxVal" type="xs:string" use="optional"/> 
  <xs:attribute name="query" type="xs:string" use="optional"/> 
 </xs:complexType> 
</xs:element> 
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Figure 4-1: Common spatial data objects 
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Performance  i s sues  

One of the biggest shortcomings to distributed systems is the tremendous difference 

in performance between a desktop application using hard drive-bound data, and an 

Internet-based application. Whether or not this is actually the case, people seem to be 

uncomfortable with the idea that the data underlying their work is out of their control. 

They may not articulate their feelings in this way, but it was felt that to have widespread 

acceptance, a key design feature of this Web service-based framework would be to offer 

the benefits of both systems. At the simplest level, the language describes information 

processing in a fully distributed manner. However, there are objects built into the 

language that provide “hooks” that software developers can use to implement the system 

in such a way that all data and models are stored locally on the user’s computer. We can 

still take advantage of the distributed framework, by making sure the software stays 

synchronized with the original data sources, but users get the performance benefits of 

using data on their hard drive, and the peace of mind of knowing that no one can 

arbitrarily cut off their access to the data. This last feature does in fact have a direct 

planning application, in that one of our target audiences is small, community-based non-

profit organizations, who often have a (real or perceived) adversarial relationship with 

government agencies, and are therefore not likely to adopt a system that relies 

completely upon a constant level of cooperation with city hall and the state house. 

In order to provide users with these benefits, a few additional objects must be added 

to the language that will only be used by software implementers, not end users. 

RemoteInfo, in Code Listing 4-10 is the construct that provides the language hooks that 
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software can use to implement local caching schemes. Consider that the model being 

read is potentially a copy whose origin is unknown. The model may have been acquired 

by a Web search, or someone may have emailed it to you. In that case, you have a file 

sitting on your computing device (which could be a computer, mobile phone, etc). You 

know that your computer can not execute this model, so it must have a means of telling 

you how it can be executed, and this requires semantics describing the original location 

of the model description (the ModelLoc object), and the location of a computer that is 

able to execute the model (the ModelRunnerLoc object). Those two objects make 

distributed computing more flexible. The next object, LocalCache, is the one that 

enables the local storage of data. Notice that LocalCache is itself a Model, which does 

not need to be of the same type as the original model. This allows the implementing 

software to, for example, cache a complex spatial operation as a simple Shapefile, while 

still having the option to re-compute the analysis from the remote source when desired. 

This example underscores the importance of PAMML’s highly decomposable design. 

The abstraction of a spatial processing operation into a function that outputs a vector 

data set, combined with the fact that any PAMML operation will output only one data 

set, creates a very simple basic structure, which greatly facilitates the loose coupling of 

distributed resources. 
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Code Listing 4-10: Objects that make distributed computing perform like desktop computing 
 

<xs:element name="RemoteInfo" type="RemoteInfoType"/> 
 
<xs:complexType name="RemoteInfoType"> 
 <xs:sequence> 
  <xs:element name="Name" type="xs:string" minOccurs="0"/> 
  <xs:element name="ModelLoc" type="xs:anyURI"/> 
  <xs:element name="ModelRunnerLoc" type="xs:anyURI" minOccurs="0"/> 
  <xs:element name="LocalCache" type="LocalCacheType" minOccurs="0"/> 
 </xs:sequence> 
</xs:complexType> 
 
<xs:complexType name="LocalCacheType"> 
 <xs:sequence> 
  <xs:element name="Cached" type="xs:boolean"/> 
  <xs:element name="CachedTime" type="xs:dateTime"/> 
  <xs:element name="NextUpdateTime" type="xs:dateTime" minOccurs="0"/> 
  <xs:element name="LocalModel" type="ModelType"/> 
 </xs:sequence> 
</xs:complexType> 

 

Figure 4-2: RemoteInfoType and LocalCacheType object diagrams 
 

 
 

 
 

This chapter has laid out a strategy for addressing one of the primary causes of high 

information management costs, the process of moving data sets from producers to users 

and into analysis systems with a minimum of human intervention. In the past decade or 

so, we have made great strides in our ability to distribute data efficiently. Most data are 
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stored in electronic format, and content encoding formats are standardized enough so 

that translation is more of an annoyance than a real barrier to use. What we have not 

addressed until now is the orchestration of the process to the level of detail where 

human intervention can be replaced by computer-to-computer negotiation. This not only 

achieves significant cost reductions through automation—replacing expensive human 

resources with cheap computing cycles—but also creates the opportunity for new levels 

of efficiency, and better systems. For example, this architecture permits software to be 

developed that runs a quick analysis based on locally cached information resources, or a 

slower, more thorough one that reaches out to remote warehouses to make sure it is 

using the most up-to-date data. In the next chapter we build upon this methodology, 

adding analysis to the data sharing framework. 
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Chapter 5.  Web Services for  
Collaborative Modeling and Decision Making 

 

The data publishing framework presented in the last chapter is one example of a 

more general strategy, which in computer programming is called the adapter design pattern. 

When computing systems need to interoperate with each other, they usually only need to 

know a few things about each other; they do not need to understand each other’s entire 

realm of functionality. Therefore, it often makes sense to create a connection object that 

encapsulates a program’s functionality into the few key parameters that other systems 

might be interested in. This connection object is called an adapter. This chapter relies 

heavily on the concepts of adapters and encapsulation to extend the data sharing 

framework into a system that integrates that data across systems for analysis, decision 

support and participation. 

Computing design patterns for distributed Web services 

In the previous chapter, data were presented as abstracted, stylized models of real-

world phenomena and processes (Keller 1999). Data and analytic models are often 

thought of as being different concepts, but this distinction is false. More generally, a 

model is a simplified description of a complex entity or process. It could represent a 

number, a spatial data set, or an analysis that predicts population growth. The practical 

difference between data models and analytic models is that the latter can usually be 

described algorithmically and therefore be reproduced by computers. One might even 
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say that what we call data are models for which we either have not yet discovered the 

algorithm, or algorithmic detail is not relevant to the problem at hand.  

One example is rainfall. Say that the federal government wants to modernize the 

National Weather Service (http://www.nws.noaa.gov). A gardener might be interested 

in having access to a service that told them how much rain is likely to fall, but they 

would have little use for the meteorological model that underlies the rainfall forecasts. In 

this case, the gardener only needs the rainfall model to be published as data. A corporate 

farmer, however, might be very interested in the details of the model, and have the 

resources to integrate it into an internal production forecast model. But they in turn 

probably would not need access to the level of detail that a NOAA scientist would want 

whose job was to re-calibrate the model. 

This can be better explained with a simple municipal planning exercise. Our task is to 

design a linear park that runs along an urban river. We need to give the landscape 

designers a plan for allocating space to various activities, including walking and bicycling. 

As a starting point, our plan is to preserve a 50-foot buffer of natural vegetation 

alongside the water, then have a 15-foot wide path for pedestrians, and finally a 25-foot 

wide path for cyclists. A generic model of a buffer is shown in Figure 5-1 and Code 

Listing 5-1. This plan can be described by three spatial buffer operations. In this model 

the computational process of creating buffer areas around geometries is hidden, or 

encapsulated. All that is made explicit are the required inputs—a spatial data set and a 

buffer distance—and the single output—a new spatial data set representing the buffer 

areas. The actual plan is shown as a map in Figure 5-2, in XML form in Code Listing 5-2 

(some attributes, like srsName and id, are omitted in this example for illustrative 
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purposes), and as a diagram in Figure 5-3. The adapter design pattern allows the linear 

park plan to be composed of three buffer models, with each being an input to the next.  

Composability is the ability to put together a piece of software from several 

components. Think of Lego™ building blocks and you have a good idea of how 

powerful and intuitive are systems exhibiting strong composability. In computer science, 

this is generally thought to be an essential property for building large and complex 

systems as it enables modularization and separation of concerns. Composability is made 

possible by the use of design patterns discussed earlier, such as inheritance (all vector 

spatial data types are descendants of a single generic type), adapters, and encapsulation. In 

systems distributed across computers and organizations, modularization and separation 

are more than critical; they are basic requirement. It is extremely elegant, therefore, that 

 
Figure 5-1: Model of a spatial buffer operation 
 

 
 
Code Listing 5-1: Model of a spatial buffer operation 
 

<xs:element name="Buffer" type="pamml:BufferType"/> 
 
<xs:complexType name="BufferType"> 
 <xs:complexContent> 
   <xs:extension base="pamml:VectorDataType"> 
    <xs:sequence> 
     <xs:element name="InputGeometry" type="VectorDataType"/> 
     <xs:element name="BufferValue" type="ValueDataType"/> 
    </xs:sequence> 
   </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
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composability not only enables the development of a distributed system, but also can be 

made to mirror organizational specialization. 

Take the linear park model as an example. Code Listing 5-2 and Figure 5-3 present a 

site planning model composed out of three buffer models, with spatial data passing from 

one buffer model’s output to the next one’s input. But what format is the data in? This is 

not specified, so this model must be executed on a single computer system. In that case, 

there is no need to specify concrete data formats, allowing the software to choose its 

own preferred internal format (this is an important feature for commercialization, as it 

allows software companies to differentiate themselves, and charge a premium, based on 

their ability to execute algorithms well, even if all software packages are using a common 

language to describe the algorithm). In many cases, however, the system will not reside 

on a single computer, but will be distributed across multiple agencies. For argument’s 

sake, let us assume that the river boundary data comes from the USGS; the extent of the 

natural buffer around the river is determined by the state department of environmental 

protection, and the recreational paths are set by the municipal parks department. 

Figure 5-2: Linear park model, cartographic visualization 
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Code Listing 5-2: Linear park planning model 
 

<Buffer name="Pedestrian path"> 
 <InputGeometry name="Bike path” type="BufferType"> 
  <InputGeometry name="Natural area" type="BufferType"> 
   <InputGeometry name="River" type="ShapefileReaderType"> 
    <ShpFile  
     dataFile="http://www.usgs.gov/data?type=hydro&amp;fips=4&part=shp"/> 
    <DbfFile  
     dataFile="http://www.usgs.gov/getdata?type=hydro&fips=4&part=dbf"/> 
    <ShxFile  
     dataFile="http://www.usgs.gov/getdata?type=hydro&fips=4&part=shx"/> 
    <SbnFile  
     dataFile="http://www.usgs.gov/getdata?type=hydro&fips=4&part=sbn"/> 
   </InputGeometry> 
   <BufferValue name="Natural area extent" type="SimpleIntValue"  
    units="feet" value="50"/> 
  </InputGeometry> 
  <BufferValue name="Bike path right-of-way" type="SimpleIntValue"  
   units="feet" value="25"/> 
 </InputGeometry> 
 <BufferValue name="Pedestrian path right-of-way" type="SimpleIntValue"  
  units="feet" value="15"/> 
</Buffer> 

 

Figure 5-3: Linear park model, diagrammatic visualization 
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Figure 5-4: Linear park model, distributed 
across agencies 
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In this scenario, we must use the adapter design pattern to guarantee interoperability 

across potentially heterogeneous systems in the various agencies. Figure 5-4 illustrates 

how our language implements the adapter pattern through data “readers” and “writers.” 

While data is processed within a system, operations can be described abstractly, as in 

Figure 5-3 above. But whenever data moves from one system to another, a Writer 

adapter must be used on exit, and a Reader adapter must be used on entrance.  In this 

way, most systems can be integrated into a distributed computing environment, as long 

as we can agree on a few basic data types. Some are shown in Figure 5-5. Note that even 

a simple data type like an integer is descended from the ModelType object. This has 

practical benefits in that this allows the value to acquire all the nice features of a model 

object, like metadata. More importantly is the semantic meaning. Even simple numbers 

are “abstracted, stylized models of real-world phenomena and processes.” When the U.S. 

Environmental Protection Agency says that X parts per billion of heavy metals in a fish 

is not hazardous to an adult’s health, X is not simply a number. It’s a complex model. 

Figure 5-5: Some basic data models 
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Supporting legacy, or “black box” systems 

Not all models are as simple to describe as a buffer. It probably does not make sense 

to create a universal language that describes complex, scientific models in minute detail. 

There is little to gain and much to lose as there are probably many good reasons why 

expert domains have their own, unique discourse. What is more useful is to recognize 

that while core parts of an analytic model might always be a “black box”—

indecipherable to all but a small group of experts—significant parameters may still be 

exposed to the computer systems of other modelers (like the corporate farmer 

mentioned earlier), and to the intellects of human decision makers. Therefore, the most 

important model in our system is the GenericModel (Figure 5-6). The GenericModel is 

important because it provides a quick way for organizations with “legacy” systems to 

participate in the new distributed framework without making major changes to their 

business processes. The drawback is that a system defined using generic models has less 

semantic meaning inherent in its description than others, and is therefore more difficult 

to integrate into collaborative analysis or decision support systems. 

Code Listing 5-3: GenericModel XML Schema 
 

<xs:element name="GenericModel" type="GenericModelType"/> 
 
<xs:complexType name="GenericModelType"> 
 <xs:complexContent> 
  <xs:extension base="ModelType"> 
   <xs:sequence> 
    <xs:element name="InputProperty" type="ModelType" maxOccurs="unbounded"/> 
    <xs:element name="OutputProperty" type="ModelType" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:extension> 
 </xs:complexContent> 
</xs:complexType> 
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Collaborative planning: linking models with decision makers 

There is a large body of work within the PSS field on participatory decision making, 

but the systems proposed are rarely integrated with the system used by the experts. This 

calls into question those systems’ ability to truly capture feedback. In fact, the fault lies at 

both ends of the process because information systems rarely have the ability to capture 

and store any kind of debate around an analysis’ results or techniques. So while 

researchers have experimented with effective systems that help explain complex 

phenomena to non-expert audiences, and enabled these audiences to play out scenarios 

that use alternative weights and values, the results of these experiences are generally 

captured outside of the original information system, in some form of human 

communication to the “experts.” Although it would be hard to find a researcher in this 

field who did not think “feedback loops” were of critical importance, it would be just as 

hard to find software that actually implemented what could be called a feedback 

information system—a system for the storage, retrieval and analysis of discussion and 

debate around a planning model.  

Figure 5-6: GenericModel, integrating legacy models 
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While the concept of a feedback information system is compelling, and is probably a 

necessary step in the evolution of participatory PSS, a thorough treatment of the topic is 

beyond the scope of this paper. For example, the types of feedback are numerous, from 

anecdotal commentary to survey instruments and voting. Each type of system might 

suggest a different information model, and might also require a different way of 

describing the participants, because the dynamics of public meetings are such that the 

type of participant matters as much as the issues being discussed. Here we seek to take a 

small step towards such a system by defining some structure in which to express the idea 

that what often happens in participatory PSS is that stakeholders want to explore “what-

if” scenarios by substituting alternative values for a model’s initial parameters. This one 

example will illustrate that the language has the ability, in general, to work in concert 

with potential participatory planning information systems. 

Modeling systems usually do a good job of allowing the analyst to explore different 

scenarios by changing parameters, but they pay little attention to preserving this 

information. And if they do, they usually take an engineering approach, saving model 

runs in a scripting language or some other shorthand geared to be an efficient means of 

Figure 5-7: Capturing feedback in the information system 
 

 

 



Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 107 

restarting the modeling process. The approach espoused here is more of an information 

modeling approach, geared towards storing different opinions in a manner suited to 

visualization and analysis of the debate. Figure 5-7 shows the ModelType object with a 

new object called Alternatives. This object may contain an unlimited number of 

models that may be considered alternatives to the enclosing object. Software that 

implemented the Alternatives object would need to make sure that the output data 

type of the alternative models matched that of the enclosing object (XML Schema has 

no elegant way of articulating this constraint), but aside from that there is wide range of 

possibilities a software package could exploit using the Alternatives object. There are 

many other important issues to consider when designing a participatory information 

system, but they are not unique to the language being developed here, and are better 

handled in a more general collaborative computing research agenda. 

 

This chapter has presented some features of PAMML most relevant to the 

challenges found in the buildout analysis. PAMML includes a number of additional 

objects and operations, which can be examined in the full XML Schema in Appendix A. 

Some of these, like Union, Intersection, Difference, and Dissolve, fill out the 

language’s library of spatial operations. We have mainly discussed operations involving 

vector data, but the schema includes enough basic raster data types and operations to 

implement map algebra. Finally, some others add “inline” data types, which are XML-

based descriptions of a data set, such as a table or a number. This simply allows the data 

to be included in the model, instead of requiring a remote reference. 
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Now that the PAMML framework has been developed, in the next chapter we return 

to the information management challenges that motivated this work, and we use these 

tools to reconstruct the buildout analysis, and show how the new framework reduces the 

cost and complexity of information processing. 
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Chapter 6.  Prototyping the Buildout Analysis 

 

An important test of the PAMML services framework advocated by this paper is its 

ability to model the trial case presented in Chapter 3, the MassGIS buildout analysis. 

This empirical experiment is presented here. By referencing the problems identified in 

Chapter 3 and detailing how the PAMML framework addresses them, we are able to 

argue that PAMML not only is able to reproduce the types of analyses commonly 

performed by physical planners, but is also able to address the high costs of collaborative 

information management and processing. In this way we go beyond the basic argument, 

common in many disciplines, that says that the use of Web services has proven to reduce 

costs; therefore if we can rebuild our traditional planning support tools on top of a Web 

services architecture, we will naturally reduce costs in the planning discipline. This 

argument is persuasive, but one could argue that the planning discipline exhibits unique 

characteristics that prevent it from benefiting from the adoption of technologies from 

other fields. By explicitly addressing the information management problems exposed in 

the buildout analysis, we greatly strengthen the case for PAMML. 

Zombie data 

Recall the concept of zombie data developed earlier. This is data that are acquired 

from its maintainer, then used for months or years, and perhaps modified with local 

knowledge, with little consideration for the changes the maintainer may have made over 

that time. These data are dead in that they have been disconnected from their living, up-



Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 110 

to-date sources. Yet they are also alive because their owner is still finding them useful. 

The zombie data problem is at the core of the information management cost dilemma. 

People have come to expect applications that are lightweight and Internet-aware to have 

limited functionality, like the online EOEA buildout tool mentioned earlier, that 

aggregates statistics for multiple towns. They have been conditioned to believe 

sophisticated, feature-rich analysis tools like GeoVista or ArcView will depend mainly 

upon local data sources, and that the data management problem is external to the 

analysis software. 

This is the key problem with MassGIS’ buildout strategy. They provide excellent 

analysis tools, in the form of ArcView and Excel. They also provide a system for 

automating analytic processing in the form of ArcView and Excel macros, called the 

Buildout Analysis Toolkit. What they do not attend to is the data management question. 

This would be fine if information management was not central to the ongoing usefulness 

of the analysis. If the data rarely changed the cost of doing things differently would be 

out of proportion to the benefits. But this is not the case. Planners do want to 

continuously plan—they just have no feasible options to make this cost-effective. 

Therefore our task is to deliver the PAMML framework at reasonable costs.  

In earlier chapters we discussed the issue of technology sizing. The costs of 

implementing a system should be heavily weighted towards the beginning of a project, 

when one-time funds are allocated and project advocates are energized. Ongoing costs 

must be as low as possible. Otherwise the technology infrastructure will disintegrate 

from lack of maintenance. To achieve these low costs, planning IT infrastructure must 

utilize general IT infrastructure as much as possible. Here we go into deeper detail, 



Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 111 

showing an operational model of how the PAMML framework addresses the zombie 

data syndrome with close attention paid to the technology sizing issue. Table 1 lists a 

cost/effort matrix for three different data management strategies. The first, “Send data,” 

is the most traditional, involving a data maintainer sending mailing or emailing a data set 

to each user. When the data changes, the entire process must be repeated. In the second 

strategy, “Publish data: Web site,” which is the current state-of-the-art, the data 

maintainer uses the Web to avoid sending updates to each and every user. She instead 

updates one copy of the data on a Web site, then informs users so that they can 

download it. This strategy has proven to be a great time-saver in that the maintenance 

agency no longer has to handle requests for data—the Web is a self-service system—but 

the users’ costs have not been addressed.  

Table 1: Data publishing system designs 
 

 Send data Publish data:  
Web site 

Publish data:  
PAMML service 

(publisher) step 1 Extract from operational 
system 

Extract from operational 
system 

Extract from operational 
system 

(publisher) step 2 Copy to media Copy to Web site Copy to Web site 

(publisher) step 3 Publicize updated data 
availability 

Publicize updated data 
availability 

 

(publisher) step 4 Process data requests   

(publisher) step 5 Send media Design-Publish Web page Code-Publish WSDL, XML 

(user) step 6 Copy from media Download from Web site Subscribe to data service in 
PAMML-enabled software 

(user) step 7 Import into operational 
system 

Import into operational 
system 

Update local cache of the 
service 

Maintenance steps 
(bold) 

Repeat 1,2,3,4,5,6,7 Repeat 1,2,3,6,7 Repeat 1,2,7 
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The PAMML strategy requires many of the same initial publishing efforts, but then 

the software takes care of ongoing updates between data publishers and users. As 

described in Chapter 4, the simplest data publishing technique PAMML offers is much 

like posting data files on a Web site. The main difference is that instead of designing an 

HTML Web page to complement the data file, the publisher designs a PAMML WSDL 

(Web Services Description Language) file and a PAMML data instance file. To make use 

of the data, a user “subscribes” to the data service, and from that point on, the user’s 

software is able to create a local copy of the data set (to maximize performance), and 

periodically check back with the original data publisher for updates. This reduces the 

burden on users and publishers, minimizing the ongoing, operational cost of information 

management. The costs of keeping the data up to date are shifted to the software design 

and development stage, where they can be spread over thousands of users, instead of 

having thousands of users each develop their own individual solutions. 

PAMML also addresses another type of zombie data problem. Data sharing often 

occurs without the knowledge of the official data maintainer. In addition to the data 

being more likely to be out of date, this leads to situations where data may be used in 

ways for which it was not originally intended. Addressing concerns like these motivate 

the data cataloging work of agencies such as the FGDC (http://www.fgdc.gov). In the 

PAMML framework, the data description file is shared (Code Listing 6-1), not the data. 

The new user takes this XML file and uses it to subscribe to the data service directly 

from the publisher. This serves two purposes. First, the new user is getting the latest 

version of the data. This is a nice feature, but the real significance of this strategy is that 

users are not passing data sets around. In effect they are passing along a contract to engage 
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with the data publisher. When the new user attempts to access the data, the publisher has 

the opportunity to decide whether or not to “do business” with that user. If the data are 

public and open, nothing important happens at this stage; it is simply sent to the user. 

However, if the data are sensitive in some way, the publisher would at this point check 

the user’s credentials, and act accordingly. If, of course, users do not want to 

intentionally subvert the system, they will choose to use the PAMML framework over 

the old ways because, as just discussed, PAMML is cheaper and easier. And in doing so, 

we strengthen the contractual relationship—social, technical, or business—between data 

publishers and users.  

Code Listing 6-1: XML instance document for Shapefile publishing 
 

<ShapefileWriter srsName=”EPSG:26986”> 
 <ShpFile dataFile=”http://www.city.us/wetlands.shp”/> 
 <DbfFile dataFile=”http://www.city.us/wetlands.dbf”/> 
 <ShxFile dataFile=”http://www.city.us/wetlands.shx”/> 
</ShapefileWriter> 

 

In the case of an isolated data set, the idea of a contract between publisher and user 

seems trivial. It becomes much more significant when discussing a real model like the 

buildout analysis, where a number of contractual issues could arise. Is the client using 

server processing resources? If so, should we allow this? Are they a public agency, an 

individual, or a land developer? Should we charge for-profit enterprises for access? All 

these issues have technical solutions, and PAMML applications, by virtue of their 

adoption of Web services, are likely to be able to respond to them cheaply, because they 

can use generic authentication and security techniques designed for any Web service, 

instead of inventing new systems for government or planning. 
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The zombie data discussion started with the goal of reducing the costs and 

complexity (effort) of keeping data up to date. We have just shown how PAMML can 

solve that problem, but there is a more general issue to address. As stated earlier, there is 

no real difference between a data set and a model. A data set could be thought of as a 

concise summary of some analytic process. Therefore, any solution to the zombie data 

problem should also apply to analytic models. In fact, this is the case. Recall that in a 

PAMML framework, the user gains access to the data by subscribing to a PAMML 

service. The details of this subscription were contained in a PAMML XML data instance 

file. It would have been more accurate to call that a model instance file, because we 

know that PAMML does not distinguish between the two. So in the PAMML 

architecture—from the user’s perspective—there is no difference between accessing a 

data set and accessing a complex model. However, from the publisher’s perspective, the 

difference may be great. If the publisher’s intent is to provide interactive access to the 

model, then the publisher probably needs more than a simple Web server to achieve this 

goal. They must first describe the model in PAMML. The simplest way to do this is to 

use the GenericModel object, which allows one to give the model a name, then describe 

its inputs (Figure 6-1) and outputs (Figure 6-2). Then they must implement some sort of 

PAMML-enabled data processing software so that users can change model parameters 

and run their own analyses. This more complex system is well within the capabilities of 

agencies, like MassGIS, who may desire them, so it is believed that PAMML offers a 

good match between the sophistication of agency needs and the required sophistication 

of their IT infrastructure. 
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Figure 6-1: Buildout model inputs (a representative sampling) 
 

 
 

Figure 6-2: Buildout model outputs (a representative sampling) 
 

 
 

 

A NOTE ON GRAPHIC CONVENTIONS: 
This chapter includes a number of box 
diagrams like those shown here. These 
diagrams show the process of performing 
analytic operations to create new data sets, 
which are in turn used in the next stage of 
operations. The diagram should be read 
from bottom to top, with the upper-most 
box being the end result of all data 
processing. The boxes all have a name, 
and an operation type—the text in curly 
brackets—that corresponds to an XML 
element in the PAMML XML schema (see 
Appendix A). Note the small shapes at the 
top and center of each box. This shape 
represents the type of data output by this 
box. A circle represents Vector data output; 
a square represents a table (or 2D matrix); 
a triangle is a single numeric value 
(Boolean, integer, or decimal). A star has 
multiple outputs. The color-coding of the 
boxes provides a quick visual hint relating 
to the type of PAMML model as well as its 
output data type (color differences may be 
difficult to distinguish in a black and white 
copy of this document). 
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Stakeholder participation 

If this research did nothing but address the zombie data-model problem, it would be 

a success. But the PAMML framework also is able to make progress on a problem with 

stakeholder participation observed in the buildout analysis. There we saw a disconnect 

between the analysis effort and the debate, discussion, and alteration that occurs when 

the analysis is brought to a municipality, as discussed by Hodges (2004). While social 

scientists may capture this debate after the fact, this rarely happens at a time when 

something can be done about it. Even when there is an effort to drive new analyses, or 

“model runs,” based on stakeholder input, this usually requires the creation of a separate 

system designed specifically for use in meetings, or other venues far from the analyst’s 

workbench. Sometimes this is necessary because each model runs takes hours or days to 

complete, but more often it is because the modeling software is not designed to: a) be 

accessed outside of the office; and b) have its “data analyst” user interface be replaced by 

a “decision-support” user interface. 

PAMML facilitates solutions to these non-performance based problems in many 

ways. PAMML is inherently designed to be accessed outside of one office because of its 

Web services roots. All operations occur via Internet protocols, whether they are limited 

to one computer in one office, or multiple computers scattered across the globe. The 

ability to apply different user interfaces to a PAMML model is even more significant. 

This feature is largely a result of using XML, which was designed for this purpose. The 

technology of how this works is discussed in more detail below. 

So we see that the early design decisions to build upon standards like XML and Web 

services help address concerns that have often been seen as idiosyncratic of the planning 
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profession. But one thing we still must do ourselves is to capture public debate and 

discussion, and integrate it with modeling efforts. Recall that we have designed a 

PAMML object called AltModel to facilitate this. In the buildout analysis, its most 

obvious use would be to capture different zoning scenarios (Figure 6-3), so that zoning 

changes could be evaluated based on their impacts on future growth, such as changes in 

the number of schools required, or the increased stress on water and sewer systems. 

Figure 6-3: Buildout model showing alternative zoning options 
 

 
 

This should by no means be seen as a complete response to the stakeholder 

participation issue, but rather a starting point for further research. We see below how 

well the PAMML framework handles rich user interfaces, but the more interesting issue 

here is the types of information one might want to capture. For example, planners often 

use voting and “weighting and rating” games in participatory settings. These techniques 
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require an expanded information model from that presented here, but if the PAMML 

framework, or at least XML, is used as a starting point, the likelihood of being able to 

integrate the technologies is high. 

Collaborative Planning 

There are, of course, many more potential points of exploration and debate other 

than zoning regulations. For example, environmental issues are always a concern. People 

might debate how far away from wetlands and environmentally sensitive habitat 

development must be. Or they might be interested in seeing how important are the 

presence of multiple environmental factors in restricting the right to build. None of 

these issues are illustrated in Figure 6-3, because it is based on the GenericModel, which 

provides a higher level view of the analysis. We can, however, articulate these issues by 

modeling them in much more detail, which in turn permits a finer level of debate. Doing 

so brings analysis out of the modeler’s workshop and into the public forum. This has 

always been the focus of participatory PSS, but those systems have rarely been 

implemented in a way that maintains a direct connection between participatory  or 

collaborative activities, and the original analysis. 

As a very basic example, recall our experience with buffer models from the previous 

chapter. Say that, in the buildout model, streams are protected by a 100-foot buffer zone, 

and this is described by a buffer model (as appears in the bottom-left corner of Figure 

6-6, which will be described shortly), which is comprised of a value model and a vector 

data set. As full-fledged models in their own right, the buffer, the value, or the vector 

data could each be observed and replaced with alternatives. The result is that people with 
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different expertise can focus on exploring and refining different sections of the model, 

and this is what expert collaboration is about. 

The buildout analysis was not difficult to express in PAMML, although the XML 

code is not easy to follow without careful study. The model is more likely to be seen 

using some sort of visual analysis tool, and this is how it is presented here. Remember 

from the earlier discussion of the buildout analysis that the general flow of the analysis 

follows these steps: 

1. Take already developed land as-is. No redevelopment of these areas. 

2. Take other areas and remove places under permanent protection from 

development. 

3. Identify areas with partial restrictions on development. 

4. Calculate maximum residential and commercial development for areas identified 

in step 2, and use step 3 to apply a penalty factor, arriving at a final buildout 

value for the area. 

Figure 6-4 shows a model of step 1. Areas already developed are specified using 

MassGIS landuse GIS data and selecting out those areas whose land use identifies them 

as already being developed. This is the Reclass model named developed, in land use 

database. Note that a Reclass model is comprised of a vector data set, landuse, and a 

table (in purple), MacConnell land use. This table is used to reclassify the land use data 

set, mapping values of the LU property to values of a new property, DEV. In this case, the 

reclassification table says that for the LU property of landuse, all values equal to or less 
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than 7 map to a DEV value of 0. All values between 8 and 13, inclusive, map to a DEV 

value of 1, and so forth.  

The landuse data is up to ten years old in some places, so it is useful to supplement 

it using local surveys—the newlu model—as well as the latest projects from 

developers—the subdivisions model. These are combined via a Union operation to 

form a model of newly developed subdivisions. These are in turn Union-ed with the 

older data to create a full model of developed land, which we simply call developed. This 

is the fine-grained model of developed land that the planner creating the buildout model 

would use. However, someone else might have no need to know all the considerations 

that led up to the overall conception of developed land, only the final result. In this case 

they would never need to look deeper than the developed model. At that level of detail 

the model looks like a vector data set with a name, which offers human users with 

semantic clues regarding the data set’s content.1 They would only see how that model of 

developed land was constructed if they drilled down deeper. 

Figure 6-5 creates a spatial data layer containing all the various environmental 

conditions that could restrict development in a particular area. The final decision on how 

greatly they impact development is decided by human judgment, rather than an 

algorithm, so the purpose of this model is to do some geographic accounting. The end 

result of this is that the analyst has every area of the town tagged directly with its 

                                                

1 An information community could develop a better strategy for passing along semantic information 
other than the name of the model by adding a custom object within the Metadata object, which is a 
component of every Model. 
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environmental issues, so that a decision regarding development potential can be more 

easily made. 

Figure 6-6 models lands that can not be developed for environmental reasons, 

including steep slopes, flood plains, and wetlands. These all go into a model of 

partially developable land. The notable characteristic of this model is the great 

diversity of primary data sources used. In Massachusetts, environmental data is usually 

acquired from MassGIS, who gets it from a federal agency, but performs some further 

processing to make it easier to use for regional work. Wetlands data may still be acquired 

from other sources, and three possible choices are illustrated in this model. In fact, 

MassGIS specifically discusses this wealth of choice for wetlands data, so its inclusion 

here is a necessity, not just a nice way to use the Alternatives model discussed in the 

last chapter. 

Figure 6-4: PAMML model of developed land 
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Figure 6-5: PAMML model of lands with development constraints 
 

 
 
 
 
Figure 6-6: PAMML model of land that is exempt from development for environmental reasons 
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Figure 6-7: PAMML model of buildout  
(“partially developable”, “environmental restrictions”, and “developed” models are summaries of models shown above) 
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Figure 6-7 illustrates the final steps of the buildout analysis. Reading from the 

bottom, developed land and areas with full environmental restrictions are combined 

using a union model to create no-build areas. These areas are then subtracted from the 

town using the zoning data layer so that the zoning codes can be attached to the areas 

that are left in are model of undeveloped land. We then remove permanently protected 

openspace, to create a model of unprotected, undeveloped lands. Next we attach the 

attributes of the partially developable areas model to create the model, partial and 

fully developable areas. 

Now we encounter the most important feature of this diagram, the reclassification, 

or lookup, tables. Partial environmental constraints is the table that an analyst 

would create to identify how big an impact partial constraints (from Figure 6-5) would 

have on development of that particular piece of land. In the MassGIS work, this step 

was performed in Microsoft Excel, whereas ESRI ArcView was used for the spatial 

operations, and this made it a bit difficult to track the analysis from start to finish. These 

two software programs could still be used to execute the analysis if they developed 

support for PAMML services, but PAMML gives us a way to formally describe the 

process without depending on any particular software package. This diagram also shows 

that this crucial stage of the analysis, being able to be represented as a simple lookup 

table, could easily be made available on the Web for interactive scenario generation, even 

if the rest of the model was more of a “black box.” 

Bus/com/ind land use and residential land use are simply used to dissolve the 

model of partial and fully developable land into residential and commercial, 
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because they are analyzed differently. The analyst then uses the final two lookup tables, 

house lots by zone type and bus/com/ind dev by zone type, to develop maximum 

development figures based on the density of development permitted under the zoning 

code. Residential buildout and commercial buildout are then merged back together 

to create a final, unified view of buildout. 

Constituents want to plan continuously, not once. EOEA recognized this, and 

provided two avenues for further analysis. The most basic is the online application 

described in Chapter 3, which mainly allows a user to get aggregate statistics on multiple, 

neighboring communities. The more flexible option is to download all the data sets used 

in the analysis, and use them with one’s own software (ArcView and Excel and the 

analysis toolkit) to create a custom buildout analysis by changing key inputs such as 

building setbacks, road widths, or natural resource protection buffers.  

In Chapter 3 we identified the main problem with these options—they are poorly 

matched to their user communities. One might imagine regional planning agencies 

having the most need for aggregate statistics, but they are also the most likely to be 

planning professionals, and desire more sophisticated tools than the Web site provides. 

On the other hand, smaller rural and suburban towns have the most use for a system 

that allows them to play out scenarios based on changes to local land use regulations, yet 

they are unlikely to have the resources necessary to make full use of the ArcView/Excel 

system. And even if they did, that system is still flawed in that it exacerbates the zombie 

data problem. A local planner is not likely to have the time to: a) acquire and develop the 

skills necessary to use the ArcView/Excel system; b) work with other departments to get 

the latest zoning and development data; and c) find a way to share these updated data 
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sets with regional and state agencies. These activities must all depend upon one another 

if we hope to see them always performed.  

The PAMML services framework does this. In order to do custom analysis, a local 

planner acquires the PAMML model from the state. To run the model, they either buy 

commercial software that understands PAMML, or they might remotely access an online 

suite of analysis tools that understood PAMML.2 Either way, whether the model 

processed the analysis locally in commercial software, or remotely using a Web service, 

the core data sets would still be accessed via Web services. The local user could physically 

change the model to point to a local copy of the data, but it would be easier to leave the 

model alone, and update the original data set. This strategy updates the data for everyone 

(who is using the PAMML framework). Note that this framework is flexible. People can 

still do things the old way, but it’s easier to do things right. This concept is a key design 

feature of PAMML in that the time and effort required to accomplish a task is aligned 

with the desired outcomes. 

Machine-to-machine interaction 

With the detailed model we have now developed, one gets a better picture of how 

extensive the opportunities for exploration are, but also how complex even a simple 

analysis like buildout can be. We have already digested the model into a diagram instead 

of presenting the raw PAMML XML code, and it is still complicated—not because the 

                                                

2 A state agency like MassGIS might develop and provide local planners access to such a system. 
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XML technology is cumbersome, but because the process of analysis is inherently quite 

intricate when every step is formally articulated.  

We struggle to share data and collaborate on analysis in part because it is difficult to 

manage all these steps, and this is where the value of a Web services architecture really 

becomes apparent. As we observed in the buildout analysis, planning problems usually 

require data inputs from many sources, and the expertise of many different kinds of 

people. This situation implies that many different types of computing systems are 

involved in the solution to any problem. The Web services architecture can be thought 

of as a programming language for distributed, loosely coupled computers. This is in stark 

contrast to most programming languages, which are designed for developing software 

programs that will be run on a single computer on a single operating system. 

By using a technology framework designed to leverage industry-wide solutions to 

machine-to-machine interaction problems, we do two important things. First, we use a 

framework that is well-aligned with the distributed nature of organizational relationships 

in planning. Second, we are able to focus on planning problems instead of inventing new 

technology solutions from scratch. With a  Web services architecture in place, we know 

that complex problems can be broken down into more manageable pieces, so that 

different people (or organizations) may develop the part of the system in which they 

have expertise. We have been able to do this before Web services, but it has been 

executed poorly, or at too high a cost. Now we have the tools needed to make machine-

to-machine interaction feasible.  
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Interactive End Products 

While the complexity of information processing may be managed through a 

distributed computing architecture, people must still strive to understand problems as a 

whole. Clearly interaction with the system must be mediated by applications and user 

interfaces that focus on a particular task or audience. The ability to build and interact 

with complex models through a visual interface is a hallmark of modern geographic 

information systems. Up to now, the case for PAMML has been based mainly on its 

importance in accurately capturing the process of information management and sharing, 

and through a better articulation of this process, creating the opportunity for automation 

and componentization. However, if we hope to ever “plan continuously,” the PAMML 

framework must not only save time, money, and effort, but must also drive the rich 

visual interfaces that professional planners demand. Visual modeling and analysis 

interfaces are common features of commercial software. In the planning field, ESRI’s 

ArcGIS is the most popular package. It’s main interface is a map, into which data 

sources can be added and styled cartographically. A visual tool called ModelBuilder™ 

has recently been added to ArcView, allowing users to design an analysis using a wiring 

diagram metaphor (Figure 6-8). While ModelBuilder™ captures the modeling process in 

a powerful visual metaphor, it does not go beyond being a front-end to an internal 

scripting language. It does nothing to expand the analyst’s role beyond that of the 

desktop, or enterprise GIS user by, for example, facilitating collaboration across users of 

ArcGIS, let alone other software packages. While ModelBuilder is a new product, visual 

model building software has been an active area of research in PSS as well as computer 

science in general for years. Proposals for generic enterprise modeling and analysis 
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toolkits can be found in abundance (Ledeczi, et. al. 1999, Delen and Benjamin 2000), but 

more relevant are the geospatial applications. GeoVista (Gahegan, et. al. 2002), shown in 

Error! Reference source not found., is probably the most mature. It provides a graphic 

interface for spatial data analysis, exploration and visualization. A staff of researchers at 

the Pennsylvania State University are tasked with the software’s continued development 

and maintenance. Visual Map Algebra (Figure 6-10) is a graphical user interface to 

Tomlin’s ubiquitous map algebra raster analysis framework (Egenhofer 1995). 

Figure 6-8: ESRI's ModelBuilder, a visual user interface to Spatial Analyst 
 

 
 

While these systems have a multitude of useful analysis features, when viewed 

through the lens of this work their similarities are more striking than their differences. 

All of these systems have two primary characteristics, the artisan work model, and the 

lack of any attention to systems interoperability. The artisan model is one where tasks are 

accomplished by a few, skilled people in a workshop alone with their tools and materials. 
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The artisan strives to improve their skills and acquire new tools to produce better 

products. This has been translated into software as products with words in their name 

like “workbench” or “toolkit,” and the analysis environment and the tools are always 

seen to be idiosyncratic of the artisan-user. These products often have sophisticated 

tools allowing a user to build their own model, invent new model types, or save the 

description of the model for later re-use; but we do not observe an effort to share 

models by promulgating a standard language, or support a model structure that supports 

multiple users collaborating. This mindset stands in contrast to the PAMML framework, 

in which data are not materials, but other tools. And tools must at some level be shared, 

which requires systems interoperability. So a key concern of this work is to retain the 

useful analytic features and user interfaces of visual modeling software, while using 

PAMML to address those aforementioned drawbacks, that hinder progress towards 

reducing the costs of planning analysis. 

Visual mode l ing 

An experiment was performed to see how well PAMML would be able to integrate 

with the type of visual model construction environments being advocated. This is a test 

of the framework’s ability to appeal to traditional PSS designers and users. The task was 

viewed as an exercise to represent objects and their semantics in a visual environment. 

As a graphical user interface environment, a generic network diagramming library called 

JGraph (http://www.jgraph.com) was used. This provided a set of tools for drawing 

shapes, moving them around the screen, connecting them with lines, and automatically 

laying out network diagrams. As JGraph was developed in an object-oriented 

programming language, Java, it was a relatively straightforward exercise to extend 
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JGraph’s standard graphic objects to include a fragment of PAMML XML code. It was 

then possible to create JGraph PAMML objects that acquired unique characteristics, 

such as color and shape, based on their PAMML type (Figure 6-11). Note that it was 

possible to fully replicate the rich graphic conventions used to illustrate the MassGIS 

buildout model. 

A separate issue was the need to move models from their representation as XML 

text in a file, to visual objects on a computer screen. A number of tools were investigated 

that could programmatically accomplish this task. It seems that while a number of 

toolkits exist to automate the creation of visual interfaces to XML data, none of them 

were fully developed enough to use for this work. This could be because XML is not 

conducive to this kind of automation, but it is probably only that XML tools are still 

maturing; it took many years for good visual HTML editing tools to be widely available, 

and XML is only about five years old.  

One popular mainstream application with nascent support for visual editing of XML 

data is Macromedia Flash MX (http://www.macromedia.com/software/flash/). Its 

roots in the Web design world (as compared to the information modeling community) 

are quite evident here as Flash has no way of building an interface directly from an XML 

Schema. It needs a concrete XML instance document for this. That technique can work 

for small, simple documents where every data field is always populated, such as a 

purchase order, but in our case, we have an extensive language in which no one model 

ever uses the entire vocabulary. In other words, Flash can be taught how to build a user 

interface for Buffer models, or ShapefileWriters only, but it offers no tools to simplify 
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development of a user interface for the entire language. Hopefully the program will 

mature in this respect in coming years.  

 

Figure 6-9: GeoVista Studio's Design Box, showing connected components 
 

 
 
 
 
Figure 6-10: Visual Map Algebra as used in the Geographer’s Toolkit 
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While Flash comes from the community of Web design, Sun Microsystems’ Java for 

XML Binding (JAXB) library comes from programmers. JAXB is part of Sun’s Web 

Services Developer Pack (http://java.sun.com/webservices/jwsdp/index.jsp). It is 

used to generate a Java version of a given XML Schema—in this case PAMML. The 

motivation for JAXB, and other similar applications, is that there should be a clear 

separation between the translation of an XML vocabulary from text to software, and the 

use of that vocabulary within the software program (by contrast, one could imagine a 

program that used the XML file as its primary data object, and any information 

processing that occurred in the software program would be reflected directly in the XML 

that it produced). JAXB was able to read PAMML XML and instantiate it as Java 

objects. It was then a simple matter to connect these PAMML Java objects to the 

JGraph objects. The library also automated the translation of PAMML back out of Java 

and into XML. This was an indispensable tool during the language development phase, 

because it allowed applications to be built while the language was still being fine-tuned. 

Changing the PAMML Java code was simply a matter of running a script and re-

compiling the program. 

While JAXB was a useful tool in the prototyping stage, it does not deal well with 

some of the advanced features of XML Schema.3 Once these became important to 

PAMML’s design, JAXB could no longer be used. While this was disappointing, the 

benefits of JAXB’s automation features are less compelling when dealing with a stable 

XML Schema. It is just as easy, and more flexible, to write one’s own XML processing 

                                                

3 Such as the XML Schema Instance <type> element, more commonly known as <xsi:type>, which is 
XML Schema’s mechanism for implementing object-oriented inheritance. 



Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 134 

and visualization routines. The failure of JAXB, and the subsequent ability to carry on 

without it, underlines one way in which the choice of an XML framework was a sound 

initial decision. Despite the relative youth of XML, no barriers were encountered that 

suggest that the PAMML Web services framework would impede the research and 

development of visual interfaces to analytic models. 

Figure 6-11: PAMML modeling using JGraph and JAXB 
 

 
 

 

Non-te chn i cal  user in t er faces  

The previous discussion has covered rich, visual interface tools geared towards 

planners and modeling professionals. However, users with less modeling expertise must 

be engaged in the planning process also. This requires that our XML models take on a 
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much simpler interface than those just discussed. It is not surprising that PAMML can 

accommodate this requirement, but the way the requirement is met is extremely 

interesting. 

The end result of the buildout analysis is the series of maps shown in chapter 3, 

along with a group of statistics like those listed for Sutton, MA in Figure 6-12. We know 

that in a PAMML framework, these statistics would be the output of models, which were 

described in XML. If we wanted to reproduce the Web page in Figure 6-12 from a 

PAMML model (which would allow the page to always display the latest projections), we 

could use one of a number of industry-standard XML processing tools that generate 

HTML code from XML. This would be cheap, not only because a host of tools already 

exist in commercial and open source marketplaces, but also because a host of skilled 

labor (Web designers) exists that can develop these applications with little additional 

training. Now we find our strategy of embracing mainstream technology taking us 

beyond direct reduction of technology costs, and into labor market efficiencies, 

underscoring once again the importance of integration. 
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Figure 6-12: Buildout analysis summary for Sutton, MA 
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Figure 6-13: Multiple user interfaces using the same code 
 

 
 

The rich, visual modeling environment geared towards analysis professionals was 

prototyped at the front end by transforming PAMML XML into a programming 

language (in this case Java™), which could then be used within a traditional software 

development environment to develop any desired application. That user interface is still 

a tool whose output is a PAMML model, which describes an information processing job. 

This job must then be executed by an information processing engine, like a GIS system, 

which might reside on one computer, or be spread out among many. This strategy could 

be adopted to provide non-technical end users with visual interfaces as well. They key 

would be to present only limited sections of the model to a user, and design the interface 

with the user’s skill level in mind. Figure 6-13 describes this scenario. An XML model is 

shown on the right. In the bottom left, the entire model is brought into a visual model 

building application like that described above. In the top left, however, we see a small 

part of the model (one buffer operation), presented in a much different fashion. One 
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variable is shown, and the value is changed by clicking on up and down arrows. In this 

case the user’s software is smart enough to generate a preview of the buffer based on the 

spatial data set and the distance value chosen by the user. 

We could also take an approach similar to that used above for Web page generation. 

There are a number of mainstream technologies available to automatically generate user 

interfaces from XML documents, most notably Flash and XForms 

(http://www.w3.org/MarkUp/Forms/). These are currently too simplistic or immature for 

developing applications for modeling professionals, but hold much promise for lighter 

weight, simpler applications—especially those designed for Web sites. And once again 

the same cost efficiencies would be realized for using mainstream technologies and a 

mainstream skill base. By mixing and matching the right XML-aware technologies with 

the right audience, we can begin to imagine how even small municipalities, with help 

from their regional planning agencies, might be able to provide their constituents with 

continuously updated, dynamic, interactive information. The completion of a housing 

project could trigger an update of septic loading. Or a new store opening could add 

congestion to a traffic model. And most importantly, any data visualization carries with it 

the underlying PAMML model description, so that one can imagine “copying” statistics 

off a Web page and pasting them into a (PAMML-aware) spreadsheet, which would not 

actually copy the text on the page, but the underlying XML PAMML code, so that the 

data does not revert to “zombie” status, and the contract between data user and provider 

is retained. 
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This chapter has presented a range of prototyping efforts, from systems design to 

actual software development. In each case the information management problems that 

are so pervasive in our profession, and are observed in the buildout analysis, were 

addressed. In many different ways we have seen that systems built upon the PAMML 

framework are likely to be cheap, scale well with organizational needs, and integrate well 

with mainstream technology trends. This evidence goes far towards proving that 

planning support systems built in this manner have a chance to avoid the systemic 

information management problems we observe today.  
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Chapter 7.  Reflections, Critiques, and Future Directions 

 

This thesis began with the concern that planning analysis is too expensive due to 

systemic problems with the information technologies in use today. No matter how small 

or straightforward the analysis is, it seems that much of the project time is spent 

gathering data and preparing it for use, and once a project is complete, its results can 

rarely be updated without incurring costs approaching those of the original analysis 

effort. And yet the sheer amount of data about the urban environment increases yearly as 

we install traffic counters on our roads, and air quality sensors on our rooftops. Making 

use of these data will not only require better information management techniques, but 

also better ways for experts to engage in collaborative analysis. However, the current 

state of technology makes it difficult to imagine that any but the largest projects and/or 

agencies will have the resources to marshal the expertise of various planning disciplines 

and their detailed data sources to analyze urban problems. 

A look at the literature on geographic information sharing offers little help. That 

field tends to hold technology as fixed, which leads to solutions where organizational 

behavior issues are the focus. We do, however, make two important findings. One is that 

the most universal determinant of geographic information sharing success is the cost-

benefit ratio of implementation. In most situations, the cost of sharing and collaboration 

is high, which creates a need for large benefits to all participating organizations. The 

second is that organizations often function as independent “trading partners” rather than 

one entity with different departments, or agencies. In this institutional context we 
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attempt to implement one of two technologies; either we use some type of “enterprise” 

system, which centralizes information management too much for the comfort of most 

business partners, or a Web site based system, which is good at disseminating read-only 

data, but not at fostering collaboration. 

What would happen if we instead adapt technology to fit the organizational behavior 

we observe in practice? This is the question we set out to answer in this thesis. It led to a 

research agenda based on Web services, a relatively new paradigm for developing multi-

participant computing systems where the parties involved are “loosely coupled,” 

meaning that their collaborative interactions do not require changes to the systems 

designed to achieve their core internal goals. The Web services paradigm was chosen 

because it is flexible enough to allow a discipline like planning support systems to build 

its own specialized tools, but defined enough so that the basic enabling software works 

for multiple industries, and is therefore a relatively cheap commodity.  

The flexibility of the Web services architecture requires that our analytic tools must 

be re-developed within this new framework, and that was the focus of the second half of 

this work. Using the MassGIS buildout analysis as a lens through which we could look at 

the key information management challenges in PSS, we built up a Web services-based 

PSS framework called PAMML. PAMML consists of a vocabulary for describing the 

components, or building blocks, or information exchange and processing, along with a 

suite of Web services that can execute the requests articulated in the vocabulary. We 

showed how data sharing, stakeholder participation, collaboration, and iteration could be 

approached from this framework. We showed that the costs could be extremely low for 
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small organizations with simple needs, but they could still interact with larger 

organizations with much more sophisticated systems. 

Finally, we used the tools we created to re-develop the buildout analysis using 

PAMML and discussed some potential user interfaces that might drive a PAMML-based 

system. While this began to show what planning support systems might “look like” from 

a user’s perspective, this thesis has been primarily about the development of the 

framework. This is unusual in that it is more common for technology research in urban 

planning to be about an implementation (software design and development) of an 

existing technology framework. This means that the technology presented here has been 

at a more abstract level, which creates a tension as the reader may have been expecting to 

see a concrete software application as the final product of this work. Fully developing a 

software implementation in this way would put the emphasis, and therefore the 

evaluation, of PAMML in the wrong place. This thesis concludes with some discussion 

of the difficulty in evaluating a work of this kind, some of the accomplishments made 

despite this difficulty, and some as yet unmentioned areas of urban planning that 

PAMML has a chance to significantly impact. 

Critiquing the PAMML vocabulary 

The vocabulary developed in this thesis has concentrated on spatial analysis and 

distributed processing. It is far from being a complete planning, or analysis, language. 

There are two main reasons for this. First, it would be impossible to cover the entire 

field of planning, or analysis in one research effort. That is rightly the work of a research 

community. Second, XML languages are designed to integrate multiple vocabularies, 
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allowing people to specialize in certain areas. For example, many XML languages will 

require a way to describe someone’s address. XML was designed so that everyone can 

reference and use the postal service’s address definition, instead of inventing their own. 

This is the strategy envisioned here for implementing a number of features that were 

not discussed. For example, the ability to construct database queries was not a feature of 

the PAMML framework describe here. This is not because database query is not a critical 

feature in PSS; in fact, the next level of sophistication in the treatment of data sharing 

would have been to discuss the need for data users to get incremental updates of large 

data sets, and synchronize their personal changes with the official repositories. These 

features were not discussed because they are so central to IT in general that the solution 

must come from the database query specialists, not the planning community. There is a 

great deal of work underway in this area,1 but at this time, no standard query vocabulary 

has been widely adopted. This argument applies to many areas that would seem central 

to the development of a planning analysis vocabulary, such as metadata, where the 

Federal Geographic Data Committee (FGDC) leads efforts to standardize the way in 

which data developers describe a data set’s provenance.  

So, while this work has shown that PAMML addresses a wide range of physical 

planning issues, the language is not complete. But it can not be judged harshly on the 

basis of what features are missing, because this lack of completeness is by design. One 

could question how well PAMML is able to complete itself through integration with 

other vocabularies, but this is largely taken care of by the design of XML itself. XML 

                                                

1 Most notably XSQL (http://xsql.sourceforge.net) and XQuery 
(http://www.w3.org/XML/Query), a specification from the World Wide Web Consortium. 
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guarantees that vocabulary integration is possible, but it does not speak to the efficacy of 

this integration. But although that criterion is important, it is so subjective that it is 

difficult to discuss here.  

Another way to think about evaluating the language is to look at the vocabulary from 

a semantic perspective. Is it too wordy? Can a term have multiple, confusing meanings? 

Are the meanings of terms easily recognizable to the community they serve? These issues 

have been addressed through careful adoption of well-vetted concepts within the spatial 

planning community. In terms of data modeling, we believe vector and raster and tabular 

data (along with some numeric types), are the key basic types to consider. For spatial 

operations, we believe that map algebra and set theory operations (union, intersect, etc.) 

provide the foundation upon which most spatial analysis is based. If one disagrees with 

this assessment, then PAMML will seem poorly conceived. However, these data types 

and operations seem to be well-accepted within our community, and therefore are not 

confusing, or verbose.  

One risk, however, is that the language has been specified at too coarse a level of 

detail. For example, there are no requirements regarding the type of geometry within a 

vector data set. We said that this should be one of the seven types described in the 

OpenGIS Simple Features for SQL specification, but must it be one type, like polygon, 

or can a vector object in PAMML consist of a mix of different types, like polygons and 

lines. PAMML simply provides the syntax with which a user can specify either choice, 

which seems to be the strategy employed by most specification efforts, so we neither 

resolve, nor exacerbate any existing debates on this issue. 
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In our research and professional work on specifications and language definitions, the 

most important factor of success by far has been community adoption. If a language is 

able to garner widespread use, it serves its purpose. Because XML ensures that a 

language designer can not break the most important rules of information modeling, the 

success of an XML-based dialect has little to do with vocabulary syntax. The most 

important factor seems to be the ability to solve the most basic problems simply and 

tersely. And another important factor is to make sure solutions scale smoothly in relation 

to the problem solved. In other words, if problem complexity and solution complexity 

were the axes of a graph, a good system design would map problems and solutions along 

a straight line.   

If a large group of users can quickly solve their most basic problems, then they are 

likely to adopt the technology. This creates a large user base, and that is the key to any 

successful Web services framework. Unlike traditional desktop software, service-oriented 

frameworks have little value until a community of users exist that take advantage of the 

system. These users will fix any problems with syntax and meaning, and develop 

good design 

bad design 

problem complexity 
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innovative new grammars on top of the original language that address new challenges 

that will arise, but the community must be developed in the first place, which leads us to 

our final critique—that these services are best tested in a multi-participant environment. 

Exploring the nature of Web services as contracts 

This research has primarily been about defining a technology framework rooted in 

Web services, however few concrete Web services were described. There are many 

reasons for this omission. First of all, the syntax of Web Services Description Language 

(WSDL) conveys little information to a human being. Second, every operation or object 

in the PAMML language could be expressed directly as a service, so from that 

perspective many services are described here. More important than these two 

considerations is the fact that the Web services are less important than the paradigm 

shift of moving to a service-oriented architecture (SOA) from a data-oriented one. This 

conceptual shift transfers the emphasis of information-intensive planning from data 

management to process management. In the buildout case, for example, once the 

planners set up data sharing agreements with local municipalities, a service-oriented 

framework like PAMML makes it as easy for the analysis software to always use the most 

up-to-date local information as it is to use zombie data off a hard drive. 

This works in theory, but the theory has not been tested in practice. Concrete 

implementations of the services we describe in the abstract are important because that is 

where the “contract” between business partners is defined. In the first chapter we 

postulated that collaborative initiatives that use technologies that in some way capture 

the social or legal contractual relationship between parties may succeed more often. We 



Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 148 

expect to see this result due to the ability to better align expectations, in the form of 

“real” contracts, with performance, the information sharing system, thereby reducing the 

chance that either party will feel that they were not receiving the agreed-upon benefits. 

This postulate has not been tested here. It requires a level of empirical research beyond 

the scope of this work. PAMML reduces costs in many other ways, so this research 

stands on its own, but work on contracts has the potential to increase the strength of our 

argument. 

When we speak of a service-oriented architecture, we are talking not only of the 

interaction between two parties, but of a whole network of content producers and 

consumers. A town assessing office may be a consumer when they acquire property 

information from private developers, but they are a producer when they then share their 

property database with a state agency. And if the state then sells this information (in an 

aggregated form, of course) to private firms, what is the town’s relationship to the final 

end user? Do they have a contract with each other? And as a practical matter, what 

happens when someone cannot keep their server running? These are critical 

implementation questions whose answers will determine whether or not Web services, 

and service-oriented architectures in general, will work. Although as planners we must be 

concerned about this issue, there is little we can do. It is a concern for the entire 

information technology community. Many standards communities are working to define 

these multi-participant service relationships2, yet no clear strategy has emerged. We can 

not even be sure that the effort in this area is warranted. WSDL already gives us the 

                                                

2 With names like Web services choreography language, Web services orchestration language, Web 
services flow language, Business process execution language, and Web services modeling language. 



Raj R. Singh Collaborative Urban Information Systems: A Web Services Approach page 149 

tools to define the relationships between a service consumer and producer. Why must 

multi-service systems require a different structure? This has yet to be proven, and may or 

may not become an important concern for planners. 

Further implications for the planning profession 

This thesis has concentrated on the value of the PAMML framework to improve the 

way in which planners engage in information management and analysis, two areas very 

central to the discipline of information technology. While some attention has been paid 

to the requirements of participatory decision making, for the most part the discussion 

has been restricted to those areas of planning practice traditionally associated with IT. 

However, if the PAMML framework were to become the backbone of planning support 

systems, this would create an opportunity for other practices to redefine the way they 

engage in spatial analysis. Two of these are explored here. 

Democrat izing urban des i gn  

One significant implication of this work is the potential to create, articulate and 

implement urban design patterns using PAMML. As Alexander says, “[a design pattern] 

describes a problem which occurs over and over again in our environment, and then 

describes the core of the solution to that problem, in such a way that you can use this 

solution a million times over, without ever doing it the same way twice” (Alexander, 

1977). In the computer science domain, like architecture, design patterns are generic 

problem-solving models. They are the building blocks of analysis, like mathematical 

theorems. 
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Urban planning provides us with a rich history of design patterns that are beautifully 

articulated, but are difficult to apply outside the designer’s original context. Looking back 

at Olmstead’s emerald necklaces of the 19th century, that designer was able to implement 

his vision of how to integrate green space into a metropolis, but despite the popularity of 

the idea and the implementation, there have been few emerald necklaces designed after 

the Olmstead era. The same can be said of Kevin Lynch’s “image-able city” (Lynch ), 

Christopher Alexander’s “pattern language” (Alexander 1977), or Alan Jacobs’ “great 

streets” (Jacobs ). 

Urban design, as it is currently conceived, is inherently an expensive endeavor. Good 

urban design usually requires the attention of a team of professional planners over the 

course of weeks or months. People’s time does not come cheaply, and therefore only the 

wealthiest communities, or the most important projects, receive the long-term attention 

of professional urban designers. The rest must make due with “commodity” design 

tools, resulting in communities whose aesthetic is driven mainly by the interactions of 

zoning regulations, road construction manuals, and the profit-maximizing tendencies of 

private developers.  

We believe that an urban design language can be articulated using the basic spatial 

syntax found in PAMML. And if this is the case, then any design theory expressed in 

PAMML has the potential to be implemented computationally, instead of by 

professional designers, thereby greatly reducing the cost of design. One recent example 

of this principle at work is Bill Hillier’s Space Syntax theory. This design theory has been 

described computationally and packaged into many different software programs 

(http://www.spacesyntax.org/software/index.htm), including ArcView 
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(http://www.casa.ucl.ac.uk/venue/space_syntax.html), the most common GIS 

package in the world. It does not seem a coincidence that in little over a decade the 

technique has been used in localities all over the world, guided by people other than the 

original designer. Of course we do not expect the design process or the end product to 

be as rich as if it were performed by human designers, but the reach of one’s ideas is 

exponentially broader. 

Enabling communi ty  s tat i st i cal  sys t ems 

More than anything else, this work aims to change the paradigm of analysis from the 

current one-time major effort to produce a document to many small efforts that produce 

a continuous information flow. “Making plans for urban development is something you 

do constantly, not once” (Hopkins, 1999). The underlying assumptions that go into a 

plan, such as economic conditions and development activity constantly change, yet most 

plans are static. This is a necessary compromise based on the cost of marshalling the 

resources required to prepare useful plans. The framework suggested here allows plans 

to become dynamic tools—more like monitoring and early warning instruments than 

rule books. This may sound threatening to those who consider plans to be embodiments 

of a community’s vision about their place, but Hopkins notes that plans are really the 

strategic implementation of visions, not the visions themselves. In this new type of plan, 

the community’s vision is still present. It simply manifests itself in a different form, such 

as the point at which development triggers a moratorium or an infrastructure 

investment. 

This paradigm implies that the goal of analysis and modeling should change from 

report generation to situation monitoring and performance measurement. The need to 
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support this effort is evident in many places. The National Neighborhood Indicators 

Partnership is an effort to build “advanced information systems with integrated and 

recurrently updated information on neighborhood conditions in their cities 

(http://www.urban.org/nnip/concept.html).” This is the most explicit example of this 

change in focus, but the trend presents itself in many other places. The Heinz Center’s 

Report on the State of the Nation’s Ecosystems (2002) recommends that environmental quality 

be monitored and reported on in a consistent, constant way, in the manner of well-

known federal economic indicators such as durable goods orders, housing production, 

consumer spending, etc. Indirectly related efforts include local government efforts to 

define a strategy for integrating the Internet into their mission. The National Civic 

League addresses this in the 8th revision of their Model City Charter. A joint project of 

the National Association of Counties and the National League of Cities seeks to support 

the ability of towns to automate government transactions over the Web through their 

“Totally Web Government” program. 

Information technology developments that change the nature of planning tools also 

affect the planning process itself (Schuur, 1994). It is difficult to imagine that current 

planning support systems can facilitate the development of community statistical systems 

in a scalable, cost-effective way. Hopefully PAMML Web services can change the nature 

of planning tools and help elevate the discourse of urban planners among the voices 

competing to shape our society. 
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In this work we have used a standard framework for building multi-organization, 

distributed computing systems to redefine the information architecture upon which 

planning support systems are built. As an initial proof of its efficacy, we designed and 

prototyped a system that solved many of the issues found in spatial analysis and physical 

planning. This has been an important exercise, as physical planning is one of the core 

areas of PSS, but the real importance of PAMML will be seen in its ability to integrate 

the work of previously separate fields. For example, the computational expression of 

urban design, as discussed above, might be built using intermediate spatial analysis tools 

built by geographers, transportation planners, and environmental experts, but our 

current technology paradigms make it hard to imagine this type, or depth, of 

collaboration at any cost. Hopefully, the PAMML framework allows us to begin to 

envision a new era in planning support systems with fewer limits to our ability to 

collaboratively and continuously plan for the future. 
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Appendix A.  Planning Analysis and Modeling Markup Language 
XML Schema 
 
<xs:schema targetNamespace="http://web.mit.edu/rajsingh/www/xml/ns/pamml" 
elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema" 
xmlns:pamml="http://web.mit.edu/rajsingh/www/xml/ns/pamml"> 
 <!--  
 ******************** 
 Basic Model Types 
 ******************** 
 --> 
 <xs:element name="Model" type="pamml:ModelType"/> 
 <xs:complexType name="ModelType"> 
  <xs:annotation> 
   <xs:documentation>Basic information for a model</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="pamml:Metadata" minOccurs="0"/> 
   <xs:element ref="pamml:Permissions" minOccurs="0"/> 
   <xs:element ref="pamml:RemoteInfo" minOccurs="0"/> 
   <xs:element ref="pamml:Alternatives" minOccurs="0"/> 
  </xs:sequence> 
  <xs:attributeGroup ref="pamml:globalAttributes"/> 
 </xs:complexType> 
 <xs:element name="Models"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="pamml:Model" minOccurs="0" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <!--  
 ******************** 
 Generic 
 ******************** 
 --> 
 <xs:element name="GenericModel" type="pamml:GenericModelType"/> 
 <xs:complexType name="GenericModelType"> 
  <xs:annotation> 
   <xs:documentation>an opaque, "black box" model that permits 
modification of specified properties</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:ModelType"> 
    <xs:sequence> 
     <xs:element name="InputProperty" type="pamml:ModelType" 
maxOccurs="unbounded"/> 
     <xs:element name="OutputProperty" type="pamml:ModelType" 
maxOccurs="unbounded"/> 
    </xs:sequence> 
   </xs:extension> 
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  </xs:complexContent> 
 </xs:complexType> 
 <!--  
 ******************** 
 BooleanData 
 ******************** 
 --> 
 <xs:element name="BooleanData" type="pamml:BooleanDataType" 
abstract="true"/> 
 <xs:complexType name="BooleanDataType"> 
  <xs:annotation> 
   <xs:documentation>a true or false value</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:ModelType"/> 
  </xs:complexContent> 
 </xs:complexType> 
 <!--  
 ******************** 
 ValueData 
 ******************** 
 --> 
 <xs:element name="ValueData" type="pamml:ValueDataType"/> 
 <xs:complexType name="ValueDataType"> 
  <xs:annotation> 
   <xs:documentation>a single cardinal numeric value</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:ModelType"> 
    <xs:attribute name="units" type="pamml:ValueUnits" use="required"/> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!--  
 ******************** 
 TableData 
 ******************** 
 --> 
 <xs:element name="TableData" type="pamml:TableDataType"/> 
 <xs:complexType name="TableDataType"> 
  <xs:annotation> 
   <xs:documentation>A two-dimensional matrix of data, like a spreadsheet 
or relational table</xs:documentation> 
   <xs:documentation>number of Attribute elements must match the data 
set</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:ModelType"> 
    <xs:sequence> 
     <xs:element ref="pamml:AttributeInfo" minOccurs="0"/> 
    </xs:sequence> 
    <xs:attribute name="key" type="xs:string" use="optional"/> 
   </xs:extension> 
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  </xs:complexContent> 
 </xs:complexType> 
 <!--  
 ******************** 
 Basic Geographic Models 
 ******************** 
 --> 
 <xs:complexType name="GeoDataType"> 
  <xs:annotation> 
   <xs:documentation>A model whose output is geographic 
data</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:ModelType"> 
    <xs:attribute name="srsName" type="xs:anyURI" use="required"/> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!--  
 ******************** 
 Vector Data Model 
 ******************** 
 --> 
 <xs:element name="VectorData" type="pamml:VectorDataType" abstract="true"/> 
 <xs:complexType name="VectorDataType"> 
  <xs:annotation> 
   <xs:documentation>A model whose output is geographic vector 
data</xs:documentation> 
   <xs:documentation>and whose attributes are in tabular 
format</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:GeoDataType"> 
    <xs:sequence> 
     <xs:element ref="pamml:AttributeInfo" minOccurs="0"> 
      <xs:annotation> 
       <xs:documentation>attribute information the model author 
chooses to expose</xs:documentation> 
      </xs:annotation> 
     </xs:element> 
    </xs:sequence> 
    <xs:attribute name="geometryType" type="pamml:GeometryType" 
use="optional"/> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!--  
 ******************** 
 Raster Data Model 
 ******************** 
 --> 
 <xs:element name="RasterData" type="pamml:RasterDataType"/> 
 <xs:complexType name="RasterDataType"> 
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  <xs:annotation> 
   <xs:documentation>A model whose output is geographic raster data and 
has only one non-geographic attribute</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:GeoDataType"> 
    <xs:attributeGroup ref="pamml:rasterAttributes"/> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!--  
 ******************** 
 Inline (written directly in PAMML) data encodings 
 ******************** 
 --> 
 <xs:element name="SimpleBooleanValue"> 
  <xs:annotation> 
   <xs:documentation>A single true or false value</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:BooleanDataType"> 
     <xs:sequence> 
      <xs:element name="Value" type="xs:boolean"/> 
     </xs:sequence> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="SimpleIntValue" type="pamml:SimpleIntValueType"/> 
 <xs:complexType name="SimpleIntValueType"> 
  <xs:annotation> 
   <xs:documentation>a single cardinal integer value</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:ValueDataType"> 
    <xs:sequence> 
     <xs:element name="Value" type="xs:int"/> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <xs:element name="SimpleDoubleValue" type="pamml:SimpleDoubleValueType"/> 
 <xs:complexType name="SimpleDoubleValueType"> 
  <xs:annotation> 
   <xs:documentation>a single cardinal decimal value</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:ValueDataType"> 
    <xs:sequence> 
     <xs:element name="Value" type="xs:double"/> 
    </xs:sequence> 
   </xs:extension> 
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  </xs:complexContent> 
 </xs:complexType> 
 <xs:element name="SimpleXMLTable"> 
  <xs:annotation> 
   <xs:documentation>An inline table</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:TableDataType"> 
     <xs:sequence> 
      <xs:element name="table"> 
       <xs:complexType> 
        <xs:sequence> 
         <xs:element name="tr" maxOccurs="unbounded"> 
          <xs:annotation> 
           <xs:documentation>a data record, e.g. a 
row</xs:documentation> 
          </xs:annotation> 
          <xs:complexType> 
           <xs:sequence> 
            <xs:element name="att" type="xs:anySimpleType" 
maxOccurs="unbounded"> 
             <xs:annotation> 
              <xs:documentation>a record data 
item</xs:documentation> 
             </xs:annotation> 
            </xs:element> 
           </xs:sequence> 
          </xs:complexType> 
         </xs:element> 
        </xs:sequence> 
        <xs:attribute name="numRecs" type="xs:int" 
use="optional"/> 
       </xs:complexType> 
      </xs:element> 
     </xs:sequence> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!--  
 ******************** 
 Spatial Operations 
 ******************** 
 --> 
 <!--  
 ******************** 
 Base Types for operations involving one spatial dataset 
 ******************** 
 --> 
 <!-- Base Vector Type --> 
 <xs:complexType name="VectorUnaryOperationType"> 
  <xs:annotation> 
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   <xs:documentation>Base Type for Spatial Vector Operations involving 
one vector dataset</xs:documentation> 
   <xs:documentation>All attributes should be maintained in the new data 
set</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:VectorDataType"> 
    <xs:sequence> 
     <xs:element name="InputGeometry" type="pamml:VectorDataType"/> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!-- Base Raster Type --> 
 <xs:complexType name="RasterUnaryOperationType"> 
  <xs:annotation> 
   <xs:documentation>Base Type for Spatial RasterOperations involving one 
raster dataset</xs:documentation> 
   <xs:documentation>An application may maintain all attributes in the 
new data set</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:RasterDataType"> 
    <xs:sequence> 
     <xs:element name="InputRaster" type="pamml:RasterDataType"/> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!--  
 ******************** 
 Base Types for operations involving two spatial datasets 
 ******************** 
 --> 
 <!-- Base Vector Type --> 
 <xs:complexType name="VectorBinaryOperationType"> 
  <xs:annotation> 
   <xs:documentation>Base Type for Spatial Vector Operations involving 
two vector datasets</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:VectorDataType"> 
    <xs:sequence> 
     <xs:element name="BaseGeometry" type="pamml:VectorDataType"/> 
     <xs:element name="OpGeometry" type="pamml:VectorDataType"/> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!-- Base Raster Type --> 
 <xs:complexType name="RasterBinaryOperationType"> 
  <xs:annotation> 
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   <xs:documentation>Base Type for Spatial RasterOperations involving two 
raster datasets</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:RasterDataType"> 
    <xs:sequence> 
     <xs:element name="InputRasterA" type="pamml:RasterDataType"/> 
     <xs:element name="InputRasterB" type="pamml:RasterDataType"/> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!--  
 ******************** 
 Map Algebra 
 ******************** 
 --> 
 <!-- Raster Algebra Focal Model --> 
 <xs:element name="RasterFocal"> 
  <xs:annotation> 
   <xs:documentation>Basic map algebra.</xs:documentation> 
   <xs:documentation>Cell values are calculated based on a constant or 
another raster grid</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:RasterUnaryOperationType"> 
     <xs:choice> 
      <xs:element name="OperationRaster" 
type="pamml:RasterDataType"/> 
      <xs:element name="OperationValue" type="pamml:ValueDataType"/> 
     </xs:choice> 
     <xs:attribute name="operation" type="pamml:FocalOperation" 
use="required"/> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!-- Raster Algebra Zonal Model --> 
 <xs:element name="RasterZonal"> 
  <xs:annotation> 
   <xs:documentation>Cell values are calculated based on operations on 
neighboring cell values. neighborhood size is a constant or a value from 
another raster grid</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:RasterUnaryOperationType"> 
     <xs:sequence> 
      <xs:choice> 
       <xs:element name="NeighborhoodSizeRaster" 
type="pamml:RasterDataType"/> 
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       <xs:element name="NeighborhoodSizeValue" 
type="pamml:ValueDataType"/> 
      </xs:choice> 
     </xs:sequence> 
     <xs:attribute name="operation" type="pamml:ZonalOperation" 
use="required"/> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!-- ***********************************************************  --> 
 <!--  Constructive Spatial Operations     --> 
 <!-- ***********************************************************  --> 
 <!--  
 ******************** 
 Buffer  
 ******************** 
 --> 
 <!-- the vector case --> 
 <xs:element name="Buffer" type="pamml:BufferType"/> 
 <xs:complexType name="BufferType"> 
  <xs:annotation> 
   <xs:documentation>Generates a buffer</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:VectorDataType"> 
    <xs:sequence> 
     <xs:element name="InputGeometry" type="pamml:VectorDataType"/> 
     <xs:element name="BufferDistance" type="pamml:ValueDataType"/> 
     <!-- add choice to use a lookup table to vary the distance based 
upon a feature value --> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!-- the raster case --> 
 <xs:complexType name="RasterBuffer"> 
  <xs:annotation> 
   <xs:documentation>Generates a buffer</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:RasterUnaryOperationType"> 
    <xs:sequence> 
     <xs:element name="BufferValue" type="pamml:ValueDataType"/> 
     <!-- add choice to use a lookup table to vary the distance based 
upon a feature value --> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!--  
 ******************** 
 Dissolve  
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 ******************** 
 --> 
 <!-- the vector case --> 
 <xs:element name="Dissolve"> 
  <xs:annotation> 
   <xs:documentation>Generates new geometry by merging adjacent features 
where the useFeatureType attribute is the same</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:VectorDataType"> 
     <xs:sequence> 
      <xs:element name="FeatureName" type="xs:string"/> 
      <xs:element name="InputGeometry" type="pamml:VectorDataType"/> 
     </xs:sequence> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!-- a raster case of dissolve does not make sense--> 
 <!-- Relate --> 
 <xs:element name="Relate"> 
  <xs:annotation> 
   <xs:documentation>Adds features to GeoData</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:VectorDataType"> 
     <xs:sequence> 
      <xs:element name="FeatureName" type="xs:string"/> 
      <xs:element name="InputGeometry" type="pamml:VectorDataType"/> 
      <xs:element name="FeatureTable" type="pamml:TableDataType"/> 
     </xs:sequence> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!--  
 ******************** 
 Set-Theoretic Spatial Overlay Operations 
 ******************** 
 --> 
 <xs:element name="Union"> 
  <xs:annotation> 
   <xs:documentation>Returns all areas from the two 
geometries</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:VectorBinaryOperationType"/> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
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 <!-- Intersection --> 
 <xs:element name="Intersection"> 
  <xs:annotation> 
   <xs:documentation>Returns all areas from 1st Vector that fall within 
2nd</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:VectorBinaryOperationType"/> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!-- Difference --> 
 <xs:element name="Difference"> 
  <xs:annotation> 
   <xs:documentation>Returns all areas from 1st Vector that do not fall 
within 2nd</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:VectorBinaryOperationType"/> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!-- Symmetric Difference--> 
 <xs:element name="SymDifference"> 
  <xs:annotation> 
   <xs:documentation>Areas of 1st and 2nd Vectors that do not intersect 
each other. Opposite of Intersection.</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:VectorBinaryOperationType"/> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!--  
 ******************** 
 Miscellaneous Spatial Operations 
 ******************** 
 --> 
 <!--  
 ******************** 
 Allocate  
 ******************** 
 --> 
 <!-- the vector case --> 
 <xs:element name="Allocate"> 
  <xs:annotation> 
   <xs:documentation>Add an attribute from 2nd Vector to 1st and 
calculate its value based on the percentage of overlap.</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
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   <xs:complexContent> 
    <xs:extension base="pamml:VectorBinaryOperationType"> 
     <xs:attribute name="useFeatureType" type="xs:string" 
use="required"/> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!-- the raster case --> 
 <xs:element name="RasterAllocate"> 
  <xs:annotation> 
   <xs:documentation>Add an attribute from 2nd Raster to 1st and 
calculate its value based on the percentage of overlap.</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:RasterBinaryOperationType"> 
     <xs:attribute name="useFeatureType" type="xs:string" 
use="required"/> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!-- Convex Hull?? --> 
 <!-- Basic arithmetic ops --> 
 <xs:element name="Query"> 
  <xs:annotation> 
   <xs:documentation>Generates new attributes on a spatial 
model</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:VectorUnaryOperationType"> 
     <xs:sequence> 
      <xs:element name="NewAttributes" 
type="pamml:AttributeInfoType"/> 
     </xs:sequence> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!-- Quantile --> 
 <xs:element name="Quantile"> 
  <xs:annotation> 
   <xs:documentation>Generates aggregate geometry by grouping the values 
of an attribute into ranges with equal numbers of members</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:VectorUnaryOperationType"> 
     <xs:attribute name="useFeatureType" type="xs:string" 
use="required"/> 
     <xs:attribute name="numRanges" type="xs:int" use="required"/> 
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    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!-- Reclass --> 
 <xs:element name="Reclass"> 
  <xs:annotation> 
   <xs:documentation>Changes attribute value based on a lookup 
table.</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:VectorUnaryOperationType"> 
     <xs:sequence> 
      <xs:element name="TableData" type="pamml:TableDataType"/> 
     </xs:sequence> 
     <xs:attribute name="reclassFeatureType" type="xs:string"/> 
     <xs:attribute name="minValFeatureType" type="xs:string" 
use="optional"/> 
     <xs:attribute name="maxValFeatureType" type="xs:string" 
use="optional"/> 
     <xs:attribute name="newValFeatureType" type="xs:string"/> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="RasterReclass"> 
  <xs:annotation> 
   <xs:documentation>Changes attribute value based on a lookup 
table.</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:RasterUnaryOperationType"> 
     <xs:sequence> 
      <xs:element name="TableData" type="pamml:TableDataType"/> 
     </xs:sequence> 
     <xs:attribute name="reclassFeatureType" type="xs:string"/> 
     <xs:attribute name="minValFeatureType" type="xs:string" 
use="optional"/> 
     <xs:attribute name="maxValFeatureType" type="xs:string" 
use="optional"/> 
     <xs:attribute name="newValFeatureType" type="xs:string"/> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!-- ***********************************************************  --> 
 <!--  Spatial Binary Predicate Operations    --> 
 <!--  these all return true or false      --> 
 <!-- ***********************************************************  --> 
 <!-- Base Vector Type --> 
 <xs:complexType name="VectorBooleanBinaryOperation"> 
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  <xs:annotation> 
   <xs:documentation>Base Type for Spatial Vector operations that compare 
two vector datasets</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:BooleanDataType"> 
    <xs:sequence> 
     <xs:element name="InputGeometry" type="pamml:VectorDataType" 
minOccurs="2" maxOccurs="2"/> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!-- Equals --> 
 <xs:element name="Equals" type="pamml:VectorBooleanBinaryOperation"> 
  <xs:annotation> 
   <xs:documentation>Interiors intersect and no part of the interior or 
boundary of one intersects the exterior of the other</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <!-- Intersects --> 
 <xs:element name="Intersects" type="pamml:VectorBooleanBinaryOperation"> 
  <xs:annotation> 
   <xs:documentation>The data sets share at least one point in common--
opposite of disjoint</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <!-- Disjoint --> 
 <xs:element name="Disjoint" type="pamml:VectorBooleanBinaryOperation"> 
  <xs:annotation> 
   <xs:documentation>The data sets share no points in 
common</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <!-- Touches --> 
 <xs:element name="Touches" type="pamml:VectorBooleanBinaryOperation"/> 
 <!-- Crosses --> 
 <xs:element name="Crosses" type="pamml:VectorBooleanBinaryOperation"/> 
 <!-- Within --> 
 <xs:element name="Within" type="pamml:VectorBooleanBinaryOperation"/> 
 <!-- Contains --> 
 <xs:element name="Contains" type="pamml:VectorBooleanBinaryOperation"/> 
 <!-- Overlaps --> 
 <xs:element name="Overlaps" type="pamml:VectorBooleanBinaryOperation"/> 
 <!--  
 ******************** 
 Non-Geographic Data Access Models 
 ******************** 
 --> 
 <!-- Simple ASCII Table --> 
 <xs:element name="SimpleASCIITable"> 
  <xs:annotation> 
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   <xs:documentation>An ASCII text file where: the first line is a tab-
separated list of attribute names, the second line is a tab-separated list of 
data types, and the remaining lines are tab-separated lists of data 
(records)</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:TableDataType"> 
     <xs:attribute name="dataFile" type="xs:anyURI"/> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!-- Value Table --> 
 <xs:element name="ValueTable"> 
  <xs:annotation> 
   <xs:documentation>A table that uses ValueModels for 
data</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:TableDataType"> 
     <xs:sequence> 
      <xs:element name="table"> 
       <xs:complexType> 
        <xs:sequence> 
         <xs:element name="tr" maxOccurs="unbounded"> 
          <xs:annotation> 
           <xs:documentation>a data record, e.g. a 
row</xs:documentation> 
          </xs:annotation> 
          <xs:complexType> 
           <xs:sequence> 
            <xs:element name="Value" 
type="pamml:ValueDataType" maxOccurs="unbounded"> 
             <xs:annotation> 
              <xs:documentation>a record data 
item</xs:documentation> 
             </xs:annotation> 
            </xs:element> 
           </xs:sequence> 
          </xs:complexType> 
         </xs:element> 
        </xs:sequence> 
        <xs:attribute name="numRecs" type="xs:int" 
use="optional"/> 
       </xs:complexType> 
      </xs:element> 
     </xs:sequence> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
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 <!-- Relational Database as a Table --> 
 <xs:element name="GenericRDBMSTable"> 
  <xs:annotation> 
   <xs:documentation/> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:TableDataType"> 
     <xs:sequence> 
      <xs:element name="User" type="xs:string"/> 
      <xs:element name="Passphrase" type="pamml:PassphraseType"/> 
      <xs:element name="Host" type="xs:anyURI"/> 
      <xs:element name="Port" type="xs:int"/> 
      <xs:element name="Driver" type="xs:string"/> 
     </xs:sequence> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!--  
 ******************** 
 Geographic Data Access Models 
 ******************** 
 --> 
 <!--  --> 
 <!-- ASCII Grid Models --> 
 <!--  --> 
 <xs:element name="ASCIIIntegerGridReader" 
type="pamml:ASCIIIntegerGridReaderType"/> 
 <xs:complexType name="ASCIIIntegerGridReaderType"> 
  <xs:annotation> 
   <xs:documentation>A raster data model whose source is an ESRI ASCII 
Grid export file with integer data</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:RasterDataType"> 
    <xs:sequence> 
     <xs:element name="DataFile" type="pamml:DataFileCompressable"/> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <xs:element name="ASCIIDoubleGridReader" 
type="pamml:ASCIIDoubleGridReaderType"/> 
 <xs:complexType name="ASCIIDoubleGridReaderType"> 
  <xs:annotation> 
   <xs:documentation>A raster data model whose source is an ESRI ASCII 
Grid file with decimal data</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:RasterDataType"> 
    <xs:sequence> 
     <xs:element name="DataFile" type="pamml:DataFileCompressable"/> 
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    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!--  --> 
 <!-- Shapefile Model --> 
 <!--  --> 
 <xs:element name="ShapefileReader" type="pamml:ShapefileReaderType"/> 
 <xs:complexType name="ShapefileReaderType"> 
  <xs:annotation> 
   <xs:documentation>A vector data model whose source is an ESRI 
Shapefile</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:VectorDataType"> 
    <xs:sequence> 
     <xs:element name="ShpFile" type="pamml:DataFileCompressable"/> 
     <xs:element name="DbfFile" type="pamml:DataFileCompressable"/> 
     <xs:element name="ShxFile" type="pamml:DataFileCompressable"/> 
     <xs:element name="SbnFile" type="pamml:DataFileCompressable" 
minOccurs="0"/> 
     <xs:element name="SbxFile" type="pamml:DataFileCompressable" 
minOccurs="0"/> 
     <xs:element name="PrjFile" type="pamml:DataFileCompressable" 
minOccurs="0"/> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <xs:element name="ShapefileWriter" type="pamml:ShapefileWriterType"/> 
 <xs:complexType name="ShapefileWriterType"> 
  <xs:annotation> 
   <xs:documentation>A vector data model whose output is an ESRI 
Shapefile</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:ShapefileReaderType"> 
    <xs:sequence> 
     <xs:element name="VectorModel" type="pamml:VectorDataType"/> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!--  --> 
 <!-- Inline Well-Known Text Model --> 
 <!--  --> 
 <xs:element name="InlineWKTReader" type="pamml:InlineWKTReaderType"/> 
 <xs:complexType name="InlineWKTReaderType"> 
  <xs:annotation> 
   <xs:documentation>A vector data model whose source is 
WellKnownText</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
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   <xs:extension base="pamml:VectorDataType"> 
    <xs:sequence> 
     <xs:element name="WKTGeometry" type="xs:string" 
maxOccurs="unbounded"/> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <xs:element name="InlineWKTWriter" type="pamml:InlineWKTWriterType"/> 
 <xs:complexType name="InlineWKTWriterType"> 
  <xs:annotation> 
   <xs:documentation>A vector data model whose output is 
WellKnownText</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:InlineWKTReaderType"> 
    <xs:sequence> 
     <xs:element name="VectorModel" type="pamml:VectorDataType"/> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!-- GML 2.1 file Model --> 
 <xs:complexType name="SimpleGML2.1Reader"> 
  <xs:annotation> 
   <xs:documentation>A vector data model whose source iconforms to OGC 
GML v2.1 </xs:documentation> 
   <xs:documentation>and having the same FeatureTypes for every 
Feature.</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:VectorDataType"> 
    <xs:sequence> 
     <xs:element name="XMLFile" type="pamml:DataFileCompressable"/> 
     <xs:element name="XMLSchemaFile" 
type="pamml:DataFileCompressable" minOccurs="0"/> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!-- Relational database spatial data Model --> 
 <xs:complexType name="RDBVectorDataType"> 
  <xs:annotation> 
   <xs:documentation>A vector data model whose source is a relational 
database</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:VectorDataType"> 
    <xs:sequence> 
     <xs:element name="User" type="xs:string"/> 
     <xs:element name="Passphrase" type="pamml:PassphraseType"/> 
     <xs:element name="Host" type="xs:anyURI"/> 
     <xs:element name="Port" type="xs:int"/> 
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     <xs:element name="Driver" type="xs:string"/> 
    </xs:sequence> 
   </xs:extension> 
  </xs:complexContent> 
 </xs:complexType> 
 <!-- PostGIS spatial data Model --> 
 <xs:element name="PostGISReader" type="pamml:PostGISReaderType"/> 
 <xs:complexType name="PostGISReaderType"> 
  <xs:annotation> 
   <xs:documentation>A vector data model whose source is a PostgreSQL 
PostGIS database</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:RDBVectorDataType"/> 
  </xs:complexContent> 
 </xs:complexType> 
 <xs:element name="PostGISWriter" type="pamml:PostGISWriterType"/> 
 <xs:complexType name="PostGISWriterType"> 
  <xs:annotation> 
   <xs:documentation>A vector data model that provides a connection to a 
PostGIS database</xs:documentation> 
  </xs:annotation> 
  <xs:complexContent> 
   <xs:extension base="pamml:PostGISReaderType"/> 
  </xs:complexContent> 
 </xs:complexType> 
 <!-- Oracle Spatial spatial data Model --> 
 <xs:element name="OracleSpatialReader"> 
  <xs:annotation> 
   <xs:documentation>A vector data model whose source is an Oracle 
Spatial database</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:RDBVectorDataType"/> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!-- ESRI SDE spatial data Model --> 
 <xs:element name="ESRISDEReader"> 
  <xs:annotation> 
   <xs:documentation>A vector data model whose source is an ESRI SDE 
database</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:RDBVectorDataType"/> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!-- VectorToRaster Model --> 
 <xs:element name="VectorToRaster"> 
  <xs:annotation> 
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   <xs:documentation>A vector to raster conversion 
model</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:RasterDataType"> 
     <xs:sequence> 
      <xs:element name="ConversionInfo"> 
       <xs:complexType> 
        <xs:attribute name="cellValue" type="xs:string" 
use="required"/> 
        <xs:attribute name="dataType" type="xs:anySimpleType" 
use="optional"/> 
        <xs:attribute name="cellSize" type="xs:double" 
use="required"/> 
       </xs:complexType> 
      </xs:element> 
      <xs:element name="InputVector" type="pamml:VectorDataType"/> 
     </xs:sequence> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!-- RasterToVector Model --> 
 <xs:element name="RasterToVector"> 
  <xs:annotation> 
   <xs:documentation>A raster to vector conversion 
model</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:complexContent> 
    <xs:extension base="pamml:VectorDataType"> 
     <xs:sequence> 
      <xs:element ref="pamml:RasterData"/> 
     </xs:sequence> 
    </xs:extension> 
   </xs:complexContent> 
  </xs:complexType> 
 </xs:element> 
 <!--  
 ******************** 
 Alternatives Models 
 ******************** 
 --> 
 <xs:element name="Alternatives"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="pamml:Alternative" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="Alternative" type="pamml:ModelType"/> 
 <!--  
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 ******************** 
 Helper components 
 ******************** 
 --> 
 <!-- *********************************** --> 
 <!-- ***** RemoteInfo  ***** --> 
 <xs:element name="RemoteInfo" type="pamml:RemoteInfoType"/> 
 <xs:complexType name="RemoteInfoType"> 
  <xs:annotation> 
   <xs:documentation>Information about remote location and execution 
possibilities</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="Name" type="xs:string" minOccurs="0"/> 
   <xs:element name="ModelLoc" type="xs:anyURI"/> 
   <xs:element name="ModelRunnerLoc" type="xs:anyURI" minOccurs="0"/> 
   <xs:element name="LocalCache" type="pamml:LocalCacheType" 
minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
 <!-- *********************************** --> 
 <!-- ***** LocalCacheType  ***** --> 
 <xs:complexType name="LocalCacheType"> 
  <xs:annotation> 
   <xs:documentation>Information about local caching of the model and its 
data</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="Cached" type="xs:boolean"/> 
   <xs:element name="CachedTime" type="xs:dateTime"/> 
   <xs:element name="NextUpdateTime" type="xs:dateTime" minOccurs="0"/> 
   <xs:element name="LocalModel" type="pamml:ModelType"/> 
  </xs:sequence> 
 </xs:complexType> 
 <!-- *********************************** --> 
 <!-- ***** Attribute  ***** --> 
 <xs:element name="Attribute"> 
  <xs:complexType> 
   <xs:attribute name="name" type="xs:string" use="required"/> 
   <xs:attribute name="dataType" type="xs:anySimpleType" use="required"/> 
   <xs:attribute name="minVal" type="xs:string" use="optional"/> 
   <xs:attribute name="maxVal" type="xs:string" use="optional"/> 
   <xs:attribute name="query" type="xs:string" use="optional"/> 
   <xs:attribute name="note" type="xs:string" use="optional"/> 
   <!-- string, double or int --> 
   <!-- XPath expression --> 
  </xs:complexType> 
 </xs:element> 
 <!-- *********************************** --> 
 <!-- ***** AttributeInfo  ***** --> 
 <xs:element name="AttributeInfo" type="pamml:AttributeInfoType"/> 
 <xs:complexType name="AttributeInfoType"> 
  <xs:annotation> 
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   <xs:documentation>metadata for record attributes. ordered list of 
names and data types</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="pamml:Attribute" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <!-- *********************************** --> 
 <!-- ***** Metadata  ***** --> 
 <xs:element name="Metadata" type="pamml:MetadataType"/> 
 <xs:complexType name="MetadataType"> 
  <xs:annotation> 
   <xs:documentation>Helpful info</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="Description" type="xs:string"/> 
   <xs:element name="Reference" type="xs:anyURI" minOccurs="0"/> 
   <xs:element name="VisualPreview" type="xs:anyURI" minOccurs="0"/> 
   <xs:element name="FGDCMetadata" type="xs:anyURI" minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
 <!-- *********************************** --> 
 <!-- ***** Permissions  ***** --> 
 <xs:element name="Permissions" type="pamml:PermissionsType"/> 
 <xs:complexType name="PermissionsType"> 
  <xs:annotation> 
   <xs:documentation>collection of user, group and other 
Permissions</xs:documentation> 
  </xs:annotation> 
  <xs:attribute name="user" type="pamml:PermissionType" use="optional"/> 
  <xs:attribute name="group" type="pamml:PermissionType" use="optional"/> 
  <xs:attribute name="other" type="pamml:PermissionType" use="optional"/> 
 </xs:complexType> 
 <!-- A sequence of characters similar to Unix permissions. 
  Characters that are understood are 'r', 'w', 'x', 'a' and '-'. 
  r=read, w=write, x=execute, a=create alternative, -=no permission 
  Full permission would be specified as rwxa. A '-' instead of 
  one of those letters means no permission. For example: 
  r-xa gives read, execute and create alternative permissions. --> 
 <xs:simpleType name="PermissionType"> 
  <xs:annotation> 
   <xs:documentation>A sequence of characters similar to Unix 
permissions, rwx, plus an 'a'</xs:documentation> 
   <xs:documentation>for alternatives allowed. 'u' is for 
undefined.</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="[rwxau]{4}"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="GeometryType"> 
  <xs:annotation> 
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   <xs:documentation>A string identifying the geometry type of all 
vectors in the data set</xs:documentation> 
   <xs:documentation>taken from the "Simple Features for SQL" OGC 
specification</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="point"/> 
   <xs:enumeration value="linestring"/> 
   <xs:enumeration value="polygon"/> 
   <xs:enumeration value="multipoint"/> 
   <xs:enumeration value="multilinestring"/> 
   <xs:enumeration value="multipolygon"/> 
   <xs:enumeration value="geometrycollection"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="CompressionType"> 
  <xs:annotation> 
   <xs:documentation>A string identifying a type of 
compression</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="zip"/> 
   <xs:enumeration value="gzip"/> 
   <xs:enumeration value="targzip"/> 
   <xs:enumeration value="bzip"/> 
   <xs:enumeration value="tarbzip"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:attributeGroup name="globalAttributes"> 
  <xs:attribute name="name" type="xs:string" use="required"/> 
  <xs:attribute name="id" type="xs:string" use="required"/> 
  <xs:attribute name="altOK" type="xs:boolean" use="optional" 
default="true"/> 
 </xs:attributeGroup> 
 <xs:attributeGroup name="rasterAttributes"> 
  <xs:attribute name="numCols" type="xs:int" use="required"/> 
  <xs:attribute name="numRows" type="xs:int" use="required"/> 
  <xs:attribute name="minX" type="xs:double" use="required"/> 
  <xs:attribute name="minY" type="xs:double" use="required"/> 
  <xs:attribute name="cellSize" type="xs:double" use="required"/> 
 </xs:attributeGroup> 
 <xs:complexType name="PassphraseType"> 
  <xs:attribute name="word" type="xs:string"/> 
  <xs:attribute name="cryptoType" type="xs:string"/> 
 </xs:complexType> 
 <xs:complexType name="DataFileCompressable"> 
  <xs:attributeGroup ref="pamml:DataFileCompressableAtts"/> 
 </xs:complexType> 
 <xs:attributeGroup name="DataFileCompressableAtts"> 
  <xs:attribute name="dataFile" type="xs:anyURI" use="required"/> 
  <xs:attribute name="compression" type="pamml:CompressionType" 
use="optional"/> 
 </xs:attributeGroup> 
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 <xs:simpleType name="ValueUnits"> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="abstract"/> 
   <xs:enumeration value="meters"/> 
   <xs:enumeration value="kilometers"/> 
   <xs:enumeration value="miles"/> 
   <xs:enumeration value="feet"/> 
   <xs:enumeration value="grams"/> 
   <xs:enumeration value="liters"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="FocalOperation"> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="add"/> 
   <xs:enumeration value="subtract"/> 
   <xs:enumeration value="multiply"/> 
   <xs:enumeration value="divide"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="ZonalOperation"> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="add"/> 
   <xs:enumeration value="subtract"/> 
   <xs:enumeration value="multiply"/> 
   <xs:enumeration value="divide"/> 
   <xs:enumeration value="mean"/> 
   <xs:enumeration value="variance"/> 
   <xs:enumeration value="stddev"/> 
   <xs:enumeration value="variety"/> 
  </xs:restriction> 
 </xs:simpleType> 
</xs:schema> 
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Appendix B.  Glossary 
 

C#: The preferred programming language for Microsoft’s .NET Web services architecture. 

COM: Component Object Model. A software architecture used by Microsoft’s Windows operating 

system that allows applications to be built from binary software components. 

CORBA: Common Object Request Broker Architecture. A platform-independent protocol for 

building distributed, platform-independent enterprise applications. 

DCOM: Distributed Component Object Model. An extension of Microsoft's Component Object 

Model (COM) to that permits the sharing of program components across a network. 

DSS: Decision Support System. Information technology and software that taps database resources 

to present information in a form that helps people at all levels of the organization make 

decisions. 

EDI: Electronic Data Interchange. The exchange of highly standardized electronic versions of 

common business documents between computer systems through communications lines with 

standard contracts. Generally the contracts are formulated within each industry. 

HTML: Hypertext Markup Language. A formatting language used for documents on the World 

Wide Web. HTML files are plain text files with formatting codes that tell HTML clients (e.g. 

Web browsers) how to display text, position graphics and form items, and display links to 

other pages. 

HTTP: Hypertext Transfer Protocol. HTTP is the set of rules for exchanging files on the World 

Wide Web. Relative to the TCP/IP suite of protocols—the basis for information exchange on 

the Internet—HTTP is an application protocol. 

GIS: Geographic Information Systems. Lately used to stand for Geographic Information Sciences, 

suggesting a true scientific discipline separate from the technology. 

GML: Geography Markup Language.  
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IT: Information Technology. Includes all matters concerned with the furtherance of computer 

science and technology and with the design, development, installation, and implementation of 

information systems and applications [San Diego State University]. An information technology 

architecture is an integrated framework for acquiring and evolving IT to achieve strategic goals. 

It has both logical and technical components. Logical components include mission, functional 

and information requirements, system configurations, and information flows. Technical 

components include IT standards and rules that will be used to implement the logical 

architecture (from http://www.ichnet.org/glossary.htm). 

.NET: Both a business strategy from Microsoft and its collection of programming support for what 

are known as Web services, the ability to use the Web rather than your own computer for 

various services. 

OWL: Web Ontology Language. OWL builds on RDF and RDF Schema and adds more vocabulary 

for describing properties and classes: among others, relations between classes (e.g. 

disjointness), cardinality (e.g. “exactly one”), equality, richer typing of properties, characteristics 

of properties (e.g. symmetry), and enumerated classes. 

RDF: Resource Description Framework. A formal data model from the World Wide Web 

Consortium (W3C) for machine understandable metadata used to provide standard 

descriptions of web resources. 

SOAP: Simple Object Access Protocol. A message layout specification that defines a uniform way of 

passing XML-encoded data. 

SQL: Structured Query Language. A standard interactive and programming language for getting 

information from and updating a database. 

UML: Universal Modeling Language. A standard notation and modeling technique for analyzing 

real-world objects, developing systems, designing software modules in object-oriented 

approach. 

URL: Universal Resource Locator. The address of a resource, or file, available on the Internet. 

Consists of the protocol of the resource (e.g. http:// or ftp://), the domain name for the 

resource (e.g. www.example.com), and an identifying string. Most strings hint at their 
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underlying content. They often  look like a file path (e.g. /pages/2003/song.mp3) or a 

command (e.g. /servlet/StockTicker?symbol=EFF). 

WSDL: Web Services Description Language. Defines services as collections of network endpoints 

whose abstract definition of interfaces and messages is separated from concrete network 

deployment or data format bindings. 

XML: Extensible Markup Language. The universal format for structured documents, messages, and 

data on the Web. XML is a meta-language (a way to define tag sets) that allows you to design 

your own customized markup language for many classes of information. 
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